
Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

PARALLEL CONSTRUCTION FOR CONTINUOUS GRASP

OPTIMIZATION ON GPUs

Lisieux Marie Marinho dos Santos Andrade
Centro de Informática – Universidade Federal da Paraíba

 Campus I, Cidade Universitária – 58059-900, João Pessoa – Paraíba
lisieuxandrade@gmail.com

Raphael Bezerra Xavier

Centro de Informática – Universidade Federal da Paraíba
 Campus I, Cidade Universitária – 58059-900, João Pessoa – Paraíba

 rbxavier18@gmail.com

Lucídio dos Anjos Formiga Cabral
Centro de Informática – Universidade Federal da Paraíba

 Campus I, Cidade Universitária – 58059-900, João Pessoa – Paraíba
lucidio@di.ufpb.br

Andrei de Araújo Formiga

Centro de Informática – Universidade Federal da Paraíba
 Campus I, Cidade Universitária – 58059-900, João Pessoa – Paraíba

 andrei@ci.ufpb.br

ABSTRACT

Optimization methods, of which Continuous Greedy Adaptive Random Search Procedure
(CGRASP) is an example, are useful in a great number of applications. As the problems in need
of optimization techniques grow in size and dimensionality, it’s increasingly necessary to harness
the additional computing power provided by parallel hardware like the Graphical Processing
Units in graphics cards. GPUs have hundreds of processing cores but their programming model is
markedly different from sequential programming models, and require care in designing parallel
versions of sequential algorithms in order to maximally utilize the additional computing power.
In this paper we propose a technique that implements the construction step of CGRASP in
parallel for GPUs, increasing the efficiency of the optimization process. This is a first, important
step on the way to a fullyparallel version of CGRASP that is able to efficiently find the optimum
in a greater number of applications.

KEYWORDS. Continuous Optimization. Continuous Greedy Adaptive Random Search
Procedure. Graphical Processing Units.

Main area. OC - Combinatorial Optimization. MH Metaheuristics.

2393

Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

1. INTRODUCTION
Optimization techniques are widely used in a great number of applications across many

areas. Optimization is necessary whenever there is a need to either maximize a measure –
efficiency, for example – or minimize one – like cost. This describes a plethora of situations in
applications in industrial and academic settings including automatic control, finance, data mining,
logistics planning and portfolio selection (Andreasson et al, 2007).

Optimization problems, and the techniques used to solve them, are roughly divided into
two main classes: discrete optimization and continuous optimization, according to the type of
space over which the function to be optimized – called the objective function – is defined.
Another way to classify optimization procedures is according to whether they guarantee that a
global optimum is found even when the objective function is nonlinear and non-convex (global
optimization) or not (local optimization). Given an objective function f(x) : X → ℝ, the goal in
global optimization is to find a specific value x* (which may be a vector) for the parameter of the
function such that f(x*) ≤ f(x) for all x ∈ X. In this case x* is called the global minimum, and the
previous inequality would be reversed for finding the global maximum. The search for x* may
also be restricted by a set of desired constraints.

One important difficulty in solving global optimization problems is the choice of an
appropriate technique considering the nature and size of the problem. Exact methods are often
inefficient for most non-trivial problems, and there is no guarantee of fast convergence for
finding the best solution. There are also methods that use the derivative of the objective function
as an indication of the direction to continue searching for a solution, and this may be an issue for
problems for which calculating the derivative of f is computationally inefficient because the
function is not differentiable or not continuous.

In order to alleviate some of these problems a set of techniques commonly classified as
metaheuristics were developed, initially for discrete optimization. Metaheuristics make few
assumptions about the optimization problems being solved, and thus are widely applicable to
many different problems. Greedy Randomized Adaptive Search Procedure (GRASP) (Feo and
Resende, 1995) is a discrete optimization technique in the class of metaheuristics, and
Continuous GRASP (CGRASP) (Hirsch et al, 2007), is a derived technique for continuous
optimization. Metaheuristics like CGRASP do not guarantee, in all cases, finding the globally
best solution, but they show good convergence properties for finding solutions near the global
optimum.

While CGRASP does not need to use the derivative of the objective function, it often
needs to compute the value of the objective function for many points in the neighborhood of a
candidate solution, a process which is repeated many times over when the algorithm is being used
to find a solution. This may make the method computationally inefficient to use, especially in
problem spaces of high dimensionality, where there may be a large number of points in the
neighborhood of a candidate solution. Parallel computation may be employed to alleviate this
problem, especially with the possibility of using accesible parallel computing hardware like
found on Graphics Processing Units (GPUs). A parallel version of the CGRASP algorithm will
be able to solve bigger problems in a smaller time than it is possible on sequential architectures or
multicore architectures, which tipically have few CPUs.

In this paper, we propose a parallel algorithm for a crucial step in the implementation of
the Continuous Greedy Randomized Adaptive Search Procedure (CGRASP) (Hirsch et al, 2007),
increasing the efficiency of the method by the use of highly-available and low-cost hardware of
Graphical Processing Units (GPUs). The implementation uses the CUDA (Compute Unified
Device Architecture) standard from nVidia (CUDA), but it can be easily adapted to other parallel
computing standards like OpenCL. The algorithm with a parallel computing step is considerably
faster than the purely sequential algorithm.

This paper is organized as follows. Section 2 presents the original CGRASP algorithm
(Hirsch et al, 2007), and Section 3 describes the ideas behind the use of Graphical Processing
Units (GPUs) for performing general computation on a massively parallel architecture. Section 4

2394

Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

describes the parallel construction algorithm used to speed-up CGRASP, and Section 5 shows
how the parallel construction version of the algorithm performs in an experimental setting.
Section 6 presents the main conclusions and results of the research reported herein.

2. CONTINUOUS GRASP (CGRASP)
Continuous Greedy Randomized Adaptative Search Procedure (CGRASP) (Hirsch et al,

2007), is a continuous version of the GRASP algorithm (Feo and Resende, 1995), which is a
discrete optimization algorithm. CGRASP shares many properties with GRASP, for example
both are multistart procedures and both carry out a local search from a greedy and randomly
constructed initial solution. One important difference is that CGRASP repeats the construction
and search phases many times, whereas GRASP executes both phases only once.

Figure 1. CGRASP pseudocode.

The procedure’s arguments are: the dimension of the problem (n); the vectors l and u,

which define the lower and upper bounds; the objective function f(); the initial and final densities
of the discretization grid, hs and he, respectively; and, finally, ρlo, which defines the
neighborhood area visited in a local search from the current solution (Hirsch et al, 2010).

We can see in the algorithm depicted in Figure 1 that in each iteration (lines 3 to 17),
while the stop criterion is not met, a solution is defined in a random way, using an uniform
distribution over the grid, whose lower and upper bounds are determined by l and u. Possible
acceptance criteria are the total number of iterations and the number of objective function
evaluations.

Analyzing the algorithm behavior, the variable that controls the initial grid density (h) is
reset with the parameter value (hs), and while h ≥ hs the algorithm will execute the construction
and local search phases sequentially. When there is improvement, (f(x) < f*), the solution is
updated as the current solution; otherwise (Imprc = false and ImprL = false), the grid density is
made smaller to improve the search for a solution (Hirsch et al, 2007).

2395

Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

2.1 Construction Phase
CGRASP has two phases: the construction phase and the local search phase. The

construction phase generates an initial solution in a random way, which provides diversification.
The constructed solution, x, has a set of unfixed coordinates, whose values can vary (Hirsch et al,
2010).

Figure 2. CGRASP construction phase.

After the set of unfixed coordinates (nFixa) is initialized, a line search procedure is called

to search for a minimum in every non-fixed coordinate i, each time keeping the other n-1
coordinates in their current values. After the line search, the value of the minimum found for
coordinate i is stored in zi and the corresponding objective function value is stored in gi. The
values of gi are used to form the LCR, which contains the values of non-fixed coordinates with
the best values of gi. Values contained in the LCR are less than or equal to the threshold

calculated in line 18 as g + α (g - g), where g and g represent the maximum and minimum

values of gi, respectively. With the LCR created, one of the coordinates in it is chosen randomly
to be removed from it and then fixed. Choosing a coordinate in this way ensures randomness in
the construction phase (Hirsch et al, 2007).

2396

Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

2.2 Local search Phase
 After the conclusion of the construction phase, the next step is the local search, which,
according to (Hirsch et al, 2010), can be thought as an approximation function between the
gradient function and the objective function. Given a solution x, the local search procedure
inspects the neighborhood of x in the quest for a new solution y, ideally better than x. This new
solution y is the initial solution in the next iteration of the local search.

Figure 3. CGRASP local search phase.

In this scenario, we can define the neighbour of the CGRASP algorithm by an actual

solution x ∈ ℝn (represented in red in the Figure 4a), discretized throug h, where: ℤ �� = �	 ∈ � | � ≤ 	 ≤ �, x + � ∙ ℎ, � ∈ ℤ�

is the points set in S, which are measures of size h and from x (represented in blue in the Figure

4b):

�� = �	 ∈ �| 	 = x + ℎ ∙ �� �′ x �
�� � x � , 	 ′ � ��(x)\ � x }" ,

corresponds to the projection of the points S$(x)\ � x }, inside the hiper-sphere centered in x

of radius h. In other words, the h-th neighbour of x is defined by the points contained ��(x)

(Figure 4b).

2397

Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

Figure 4. Representation of neighborhood CGRASP, (a) ��(x)\ � x }. (b) Representation of the

set ��(x).

In the lines 6 to 15, the algorithm select MaxPoints points randomly from ��(∗),if the
actual solution x is selected from ��(∗) is feasible, so x will be defined by 	 (∗ ←),and
ImprL is set to true. ImprL, as Imprc in the construction phase, hold the feature to signal whether
the procedure improved or not the quality of the generated solution.

3. GENERAL COMPUTING ON GPUS
The current Graphical Processing Units (GPUs) evolved from graphics hardware

intended for acceleration of 3D rendering in personal computers, mostly used for real-time 3D
rendering in games (Kirk and Hwu, 2010). With time, more parts the rendering pipeline were
implemented in the graphics processors, to the point where such processors became quite capable
as computing devices. Eventually, the manufacturers of graphics hardware developed
programmable graphics processors that could be programmed by users, via software (using the
so-called shaders (Engel, 2004)). This led some researchers to the idea of using GPUs as general
computing devices, by adapting the graphics shaders to non-intended uses (Fung and Mann,
2004). Manufacturers then established standards and tools created to make it easier for
programmers to use their hardware as general computing devices: NVIDIA created CUDA (Kirk
and Hwu, 2010), while AMD and other companies developed OpenCL (Aaftab Munshi et al,
2011), as an open standard.

Figure 5. Overall architecture of a typical GPU. The GPU contains multiple Streaming
Multiprocessors (SMs), each of which is composed of multiple Streaming Processors (SPs) or
cores.

The evolution of GPU hardware from graphics accelerators resulted in an architecture
that is quite distinct from the processors used as CPUs in current computers. GPUs have many
simple processing cores – totaling hundreds of cores in current hardware – instead of the few
complex cores in current CPUs. GPUs are massively parallel processors that are able to execute
large parallel tasks much more efficiently than CPUs. However, each group of cores execute the
same instructions at the same time, making GPUs a poor fit for applications that do not present
data parallelism (Farber, 2011).

Even considering the differing standards from manufacturers, the architectures of GPUs
have converged to similar lines. GPUs are composed of a number of Streaming Multiprocessors
(SMs). Each SM encases many processing cores or Streaming Processors (SPs), typically 32 in
current hardware (Farber, 2011). SMs are independent units of execution, dispatching threads of
execution to their SPs, one thread per core. The general architectural organization of GPUs is
displayed in Figure 5. In most cases, the SMs can access only memory that is located in the GPU.
This means that any data that must be processed in the GPU must be transferred from the system

2398

Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

main memory to the GPU memory.
Each process that is to be executed on the GPU is called a computational kernel, or

simply a kernel. In CUDA C, the version of the C language for programming the CUDA standard
from NVIDIA, each kernel is called as a function. All cores in a Streaming Multiprocessor will
execute the same instructions, in lockstep, although the instructions can access different memory
locations. Each SM is thus a SIMD (Single Instruction, Multiple Data) computing machine,
although as the GPU contains multiple SMs, the execution model is more appropriately called
Single Instruction, Multiple Threads (SIMT) (Farber, 2011). Conditional instructions (for
example in if-then-else constructs) which force threads in the same SM to different paths of
execution cause thread divergence. In practice, thread divergence is implemented by making
some cores in a SM idle while others execute the conditional instruction, reducing overall
throughput.

The architectural organization of GPUs makes it clear that efficient execution on
graphical hardware requires programs which are organized very distinctly from programs
designed for CPU execution. Two general principles for efficient execution on GPUs are to keep
the processors busy and to avoid thread divergence. The implementation techniques for the
construction phase of CGRASP on GPUs, described in the following section, were designed to
adhere to these two general principles.

4. PARALLEL CONSTRUCTION ON GPUS
The construction step of CGRASP (shown in Figure 2) takes little time when the

objective function is of low dimensionality. However, the construction becomes increasingly
significant (in terms of time efficiency) as the dimensionality of the objective function increases.
In an experiment with the sequential implementation, the construction phase when optimizing a
two-dimensional objective function amounts to less than 10% of the total time spent in the
CGRASP optimization algorithm, while for a 30-dimensional function the construction phase
makes more than 40% of the total time of the algorithm. This indicates that the construction
phase is a critical part of the algorithm to improve when trying to solve bigger problems.

Graphical Processing Units (GPUs) present a low-cost hardware solution to increase the
computational power available to solve problems. Therefore, a natural idea is to parallelize
optimization methods like CGRASP to take advantage of the greater number of processing units
available in GPUs. However, very few algorithms can be directly translated to execute on GPUs
without change, and great care is often necessary to get any efficiency gain when using this kind
of parallel hardware.

A natural target for parallelization of the CGRASP algorithm is the construction phase,
because of its increasing footprint in the total time as the dimensionality increases. However, to
achieve good efficiency on GPUs, it is necessary to structure the algorithm and data structures to
better fit the GPU architecture (as seen in Section 3).

The costly part in the standard CGRASP construction phase (shown in Figure 2) is the
loop between lines 7 and 16, where a linear search is performed in each direction that is not yet
fixed. The parallel algorithm could be just a parallel version of this loop, but the management of
the list of unfixed dimensions from CPU to GPU would create too much overhead. Thus most of
the construction process is done on the GPU. The parallel construction program, shown in Figure
6, first copies the important vectors from CPU to GPU memory, then initializes the list of unfixed
dimensions on GPU memory (calling an initialization kernel) and then finally calls a GPU kernel
with n threads to do the construction. At the end, the resulting vector x is copied back to CPU
memory to return to the rest of the CGRASP process. Note that the bounds vectors l and u do not
change during the CGRASP optimization procedure, so it can be copied only once to the GPU
memory instead of every time as in line 1 of Figure 6. This is actually how it is implemented, but
the high-level algorithm is simpler like described in Figure 6.

2399

Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

Figure 6. Parallel construction algorithm.

The construction kernel called by the parallel construction algorithm is shown in Figure 7.

The kernel manages the unfixed list and calls the linear search kernel, one for each thread, using
the thread index as a parameter. In implementation terms, LinearSearchKernel is a device kernel,
to be called by global kernels like ConstructionKernel. The linear search kernel verifies the
unfixed list and does a linear search for a minimum in each dimension that is not fixed. As an
implementation detail, it is important to note that the unfixed list is stored as a vector of booleans
on the GPU.

Figure 7. The parallel construction kernel.

5. EXPERIMENTS AND RESULTS

The CGRASP algorithm with the parallel construction procedure shown in Figures 6 was
implemented using the CUDA C language (Kirk and Hwu, 2010). We used this implementation
on a set of experiments to determine the performance of the CGRASP algorithm with parallel
construction. The experiments consisted on searching the optimum on a set of known objective
functions of various types and dimensionalities. The version with parallel construction was
compared against a fully sequential version written in C++. As this was a first experimental
assessment, both versions were executed on a machine with an Intel Core i3 CPU, 4Gb of RAM
and a GeForce 630M GPU with 2Gb of dedicated graphics memory. Further experiments are
planned to be performed on a more recent and capable GPU, for a high-performance test.

The first phase of experimental testing was performed with objective functions of low
dimensionality (less than 20 dimensions). In this case it became clear that the version with
parallel construction did not achieve significant speedup over the sequential versions. When
measuring the impact of the construction phase on the CGRASP algorithm for functions of low

2400

Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

dimensionality, we verified that the construction phase can take as little as 10% of the total
execution time for the algorithm. Improving the construction phase on these kinds of problems is
thus ineffective.

However, when profiling the CGRASP algorithm for objective functions of more than 20
dimensions, we verified that the construction phase could take as much as 30% or even 40% of
the total execution time. This lead to the second phase of experimental testing where we used the
CGRASP algorithm with parallel construction on these high dimension objective functions,
achieving a significant speedup. The results are shown in Table I, which displays median times
for ten executions of the algorithm on each objective function. The same results are shown
graphically in Figure 8. Note that for both versions the number of objective function evaluations
did not differ by much, and as such this measure is not interesting in this comparison.

Function Dimensions CGRASP CGRASP+PC Speedup
Griewank 20 12.076s 9.254s 1.3049
Rastrigin 20 9.740s 7.439s 1.3093
Powell 24 10.312s 7.524s 1.3726
Dixon-price 25 7.170s 5.181s 1.3832
Sphere 30 8.212s 5.630s 1.4582
Levy 30 13.144s 8.978s 1.4636
Piccioni 30 10.271s 8.039s 1.2776
F25aF28 40 18.722s 11.996s 1.5607

Table I. Time performance for finding optimums of objective functions using the original version
of CGRASP and a version with parallel construction (CGRASP+PC).

 These preliminary results clearly indicate improvement when using the version of the
algorithm with parallel construction. Another trend we can observe in the data is that the speedup
increases with the dimensionality of the objective function. Time performance of CGRASP does
not depend only on the dimensionality of the function, because some functions are more difficult
to optimize than others (the function sphere, for instance, is just a hyper-sphere in 30 dimensions,
which is quite easy to optimize). However, when looking to the speedups obtained we see that
functions in higher dimensions are sped up more by the parallel version, up to a maximum of
56% for the function with highest dimensionality (F25aF28). It is also important to note that the
dimensionality of the test functions shown in Table I is still quite low for many application areas
– like computational chemistry and machine learning – where functions in hundreds of
dimensions are not unusual. Thus we can expect the CGRASP+PC algorithm to perform even
better on bigger problems, which is a desirable property.

2401

Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

Figure 8. Median times for optimization of test functions using the ori
GRASP with parallel construction (CGRASP+GP).

6. CONCLUSION AND FUTURE WORK

In this paper we described a version of the CGRASP
that performs the construction
Although the construction phase of the algorithm is
objective functions of low dimensionality are optimized by the algorithm, the same
becomes increasingly important as the dimensional
problems to which optimization is applied increase in size and dimensionality, it’s
have parallel versions of the optimization methods

The construction phase was
importance as the dimensionality
experiments have shown a promising speedup when construction
functions of dimensionality
dimensions considering problems in application areas like

As future work we intend to apply the version of CGRASP
bigger problems, to run more
parts of the CGRASP algorithm to achieve a parallel
fully utilize the computational power of GPUs.

References
Aaftab Munshi, T. G. M., Gaster, B. and Fung, J.
Wesley, 2011.

Andreasson, N., Evgrafov
Optimization. Studentlitteratur AB, 2007.

Engel, W., Programming Vertex & Pixel Shaders.

Farber, R., CUDA Application Design and Development. Morgan

0

2

4

6

8

10

12

14

16

18

20

Figure 8. Median times for optimization of test functions using the original CGRASP and
GRASP with parallel construction (CGRASP+GP).

6. CONCLUSION AND FUTURE WORK
In this paper we described a version of the CGRASP continuous optimization algorithm

that performs the construction of candidate solutions in parallel using graphics hardware
Although the construction phase of the algorithm is not a prime target for parallelization when

of low dimensionality are optimized by the algorithm, the same
becomes increasingly important as the dimensionality of the objective function increases. As the

optimization is applied increase in size and dimensionality, it’s
have parallel versions of the optimization methods to cope with the bigger problems.

The construction phase was targeted as a first point for parallelization due to its increased
importance as the dimensionality of the objective function increases, as mentioned. Our
experiments have shown a promising speedup when construction is performed in parallel for

 between 20 and 30, though these are still a small number
dimensions considering problems in application areas like machine learning, for example.

As future work we intend to apply the version of CGRASP with parallel construction to
 extensive experiments on bigger hardware, and to parallelize

parts of the CGRASP algorithm to achieve a parallel metaheuristic optimization procedure that
computational power of GPUs.

shi, T. G. M., Gaster, B. and Fung, J., OpenCL Programming

, A. and Patriksson, M., An Introduction to
Studentlitteratur AB, 2007.

, Programming Vertex & Pixel Shaders. Charles River Media, 2004.

, CUDA Application Design and Development. Morgan Kaufmann, 2011.

ginal CGRASP and

continuous optimization algorithm
hics hardware (GPUs).

not a prime target for parallelization when
of low dimensionality are optimized by the algorithm, the same phase

of the objective function increases. As the
optimization is applied increase in size and dimensionality, it’s desirable to

to cope with the bigger problems.
parallelization due to its increased

of the objective function increases, as mentioned. Our
is performed in parallel for

between 20 and 30, though these are still a small number of
machine learning, for example.

with parallel construction to
extensive experiments on bigger hardware, and to parallelize other

metaheuristic optimization procedure that

, OpenCL Programming Guide. Addison-

An Introduction to Continuous

Kaufmann, 2011.

CGRASP

CGRASP+PC

2402

Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

Feo, T. A. and Resende, M. G. C., Greedy randomized adaptive search procedures, Journal of
Global Optimization, vol. 6, pp. 109–133, 1995.

Fung, J. and Mann S., Using multiple graphics cards as a general purpose parallel computer:
Applications to computer vision, in Proceedings of the 17th International Conference on Pattern
Recognition (ICPR2004). IEEE Press, 2004.

Hirsch, M. J., Meneses, C. N., Pardalos, P. M., and Resende, M. G. C., Global optimization

by continuous grasp, Optimization Letters, vol. 1, pp. 201–212, 2007.

Hirsch,M. J., Pardalos, P. M., and Resende, M. G. C., Speeding up continuous grasp,
European Journal of Operational Research, vol. 205, pp. 507–521, 2010.

Kirk, D. B. and Hwu, W.-M. W. , Programming Massively Parallel Processors: A Hands-on
Approach. Morgan Kaufmann, 2010.

Appendix A.

Function Definitions
This appendix list all the functions used in the experiments described in this paper.

Dixon-price (n = 25)

Definition: '� = ((− 1)+ + ∑ -(2	/+ − 	/�()+�/0+
Domain: [−10; 10]�

Global Minimum: x* = 2�567556 , ∀- = 1, … , :; '�∗ = 0

F25aF28

Definition: '� = ;∑ �65+67<�/0(= + ;∑ �6 �67<+6�/0(=
Domain: [−20; 7]�
Global Minimum: x* = (0;...;0); '�∗ = 0

Griewank (n = 20)

Definition: '� = ∑ �65?@@@ − ∏ cos (�6√/ + 1)�/0(�/0(

Domain: [−300; 600]�
Global Minimum: x* = (0;...;0); '�∗ = 0

Levy (n = 30)

Definition: '� = H-:+(Ix() + ∑ J(/ − 1)+ K1 + 10 H-:+ (IxLM()NO +��(/0((� − 1)+ (10 H-:+(IxP))
Domain: [−10; 10]�
Global Minimum: - 11, 50236

Piccioni (n = 30)

Definition: '� = 10 H-:+ (Ix() − ∑ [(/ − 1)+ + K1 + 10 H-:+ (Ix(+ 1)N]��(/0(– (� − 1)+
Domain: [−10; 10]�
Global Minimum: x* = (0;...;0); '�∗ = 0

Powell (n = 20)

Definition: '� = ∑ [(?/�Q + 10	?/�+)+ + 5(?/�(+ 	?/)+ + (?/�+ +�/?/0(2	?/�()? + 10(?/�Q − 	?/)?]

2403

Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

Domain: [−4; 5]�
Global Minimum: x* = (3; -1; 0; 1; 3;…;3;-1;0;1); '�∗ = 0

Rastrigin (n = 20)

Definition: '� = 10� + ∑ (+ − 10 cos(2IxL))�/0(
Domain: [−2,56; 5,12]�
Global Minimum: x* = (0;...;0); '�∗ = 0

Sphere (n = 30)
Definition: '� = ∑ 	+�/0(
Domain: [−2,56; 5,12]�
Global Minimum: x* = (0;...;0); '�∗ = 0

2404

