
Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

Minimum Tiling of a Rectangle by Squares

Michele Monaci
Università degli Studi di Padova

Via Gradenigo 6/A, 35131 Padova, Italia
monaci@dei.unipd.it

André Gustavo dos Santos
Universidade Federal de Viçosa

Av. P. H. Rolfs s/n, 36570-900 Viçosa, MG
andre@dpi.ufv.br

ABSTRACT
We consider a Two-Dimensional problem in which one is required to split a given rect-

angular bin into the smallest number of items. The resulting items must be squares, to be packed,
without overlapping, into the bin so as to cover all the given rectangle. We present a mathematical
model and a heuristic algorithm that is proved to find the optimal solution in some special cases.
Then, we introduce a relaxation of the problem and present two different exact approaches based on
this relaxation. Finally, we give some preliminary computational experiments on the performances
of the algorithms on a set of randomly generated instances.

KEYWORDS. Two-Dimensional Packing, Mathematical Models, Computational Experiments.

Main Area: OC - Combinatorial Optimization, PM - Mathematical Programming

2426

Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

1. Introduction

We consider the problem of splitting a given rectangular bin into the smallest number of
smaller square items having integer sides. These items have to be packed, without overlapping, with
their edges parallel to one of the edges of the bin, so as to cover all the given rectangle. Similar
problems have been addressed in the computational geometry literature, where a covering of a given
region is called a tiling, and the smaller items are called tiles. Thus, the problem we consider will
be denoted as the Minimum Tiling of a Rectangle by Squares (MTRS).

Several papers in the literature consider the case in which all the produced tiles must be
different from each other. If this is the case, the rectangle is said to be perfect. Brooks et al. (1940)
considered the problem of finding (if any) a perfect tiling of a given rectangle, and showed that a
correspondence exists between feasible solutions of this problem and a certain class of planar elec-
trical networks. Beaumont et al. (2002) considered the problems of covering a square into a set of p
(say) rectangles that have a given area, so as to minimize either the sum of the perimeters of the rect-
angles or the maximum among the p perimeters. For these problems, motivated in heterogeneous
parallel computing, they gave a proof of NP-completness and introduced approximation algorithms.
Kenyon (1996) addressed MTRS and gave a tight logarithmic bound on the optimal solution value,
where Walters (2009) proved polylogarithmic lower and upper bounds for the generalization of the
problem to a higher dimension. Recently, Kurz (2012) considered the problem of covering a given
n × n square with the minimum number of squares having side at most n − 1, and proposed an
Integer Linear Programming (ILP) for this problem.

MTRS is strictly related to the two dimensional bin packing problem (2BP) as well. In
this problem, one is required to allocate a given set of rectangular items to a minimum number
of larger bins; the reader is referred, e.g., to Lodi et al. (2010) for a recent survey on this topic.
However, two main differences arise between the two problems: (i) in MTRS we are required to
define the dimensions of each items, whereas in classical packing problems there are an input of the
problem; (ii) all the items to be packed must be squares.

MTRS arises as a subproblem of more complex packing problems, and has some practical
applications, e.g., in telecommunications. Consider, for example, the IEEE 802.16-2009 standard
which is the basis of Mobile WiMAX; in this protocol, data packets have to be transmitted from a
base station to mobile users, and transmission is implemented using different time slots and differ-
ent frequencies. This can be modelled as a two-dimensional packing problem in which a rectangular
data bin is used to transmit some rectangular data packets; in this model, widths and heights rep-
resent time slots and frequencies, respectively, see Lodi et al. (2011) for more details. Each data
packet that is transmitted requires additional information to be stored (and coded/decoded), that
is possibly reduced in case the packet is sent as a square instead of a rectangle. To maximize the
throughput of the system, one is thus interested in filling the entire data bin with the smallest number
of square items.

The paper is organized as follows. In Section 2 we introduce an Integer Linear Program-
ming (ILP) model for MTRS, while Section 3 gives a heuristic algorithm that provides the optimal
solution in some special cases. In Section 4 we introduce a mathematical model for a relaxation of
the problem, and strengthen this relaxation by adding some valid inequalities; two different exact
algorithms based on this relaxation are then presented. Finally, Section 5 presents a preliminary
computational analysis of the proposed algorithms on a set of randomly generated instances, and
Section 6 draws some conclusions.

Throughout the paper we assume, without loss of generality, that H and W are positive
integers. Noting that the cases W = 1 (or H = 1) and W = H would lead to trivial optimal
solutions (with value H and 1, respectively), we will further assume that 1 < W < H , possibly
rotating the rectangle by 90 degrees if necessary.

2427

Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

2. Problem formulation
In this section we give a formal description of the problem we consider, and introduce a

mathematical formulation for its solution.
We are given a rectangular bin having integer width W and integer height H . The Mini-

mum Tiling of a Rectangle by Squares (MTRS) problem requires to define n square items, so that:

• each item j has an integer side aj ;

• items are orthogonally allocated to the bin without overlapping;

• the set of square items entirely covers the given bin; and

• the number of produced items is a minimum.

To provide an Integer Linear Programming (ILP) formulation for MTRS, we make use
of a Cartesian system having axes x and y and assume that the bottom left corner of the bin is at
coordinate (0, 0). Then, we note that the size of each produced square in any feasible solution is
bounded by W (as we assume W < H), and define the following set of decisional variables:

αijt =

{
1 if an item of size t is placed in position (i, j);
0 otherwise

(1)

for t = 1, . . . ,W , i ∈Wt = {1, . . . ,W − t+ 1} and j ∈ Ht = {1, . . . ,H − t+ 1}.
Thus, an ILP model for MTRS is as follows

min

W∑
t=1

Wt∑
i=1

Ht∑
j=1

αijt (2)

W∑
t=1

max(i,W−t+1)∑
u=min(0,i−t+1)

max(j,H−t+1)∑
j=min(0,j−t+1)

αuvt = 1 i = 1, . . . ,W ; j = 1, . . . ,H (3)

αijt ∈ {0, 1} t = 1, . . . ,W ; i ∈Wt; j ∈ Ht. (4)

The objective function (2) minimizes the number of items that are produced; constraints (3) impose
that any unit square of the bin, with bottom left corner, say, at coordinate (i, j), is occupied by
exactly one item.

The formulation above is similar to the ILP model proposed for the two-dimensional bin
packing problem by Beasley (1985), and by Kurz (2012) for the problem of splitting an n×n square
into square items having size at most n− 1. The model has W 2H variables and W H constraints;
this may prevent the possibility of directly using this model in practice even for reasonable values
of the W and H parameters. On the contrary, this model can be solved in an efficient way for small
values of W and H , possibly producing approximate solutions for MTRS in case the optimum
cannot be computed.

3. Heuristic Solution of MTRS
In this section we present a solution approach for MTRS based on a dynamic program-

ming scheme; this algorithm is particularly suited for those instances for which the optimal solution
corresponds to a pattern that is guillotinable, i.e., in which each item can be cut with a sequence of
edge to edge cuts parallel to the edges of the bin (see the left packing in Figure 1). This is a relevant
special case of the problem, and of Two-Dimensional packing problems as well, which has received
considerable attention due to relevant real-world applications. For example, many automatic ma-
chines do not require the presence of a human employee, but can only produce cuts that go from
one side to the other of the bin, at the expense of deteriorating the quality of the produced solutions.

2428

Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

8

5

3

2
1

1

7

6
5

4

4

1

Figure 1: Example of guillotine and non guillotine patterns (the numbers denote the sizes of the items).

For a given rectangle W ×H , the dynamic programming algorithm computes the optimal
solution value F (W,H) by means of the following recursion scheme:

F (W,H) =

F (H,W) if W > H;
0 if W ≤ 0;
1 if W = H;
min(min{F (k,H) + F (W − k,H); k = 1, . . . ,W},

min{F (W,k) + F (W,H − k); k = 1, . . . ,H}) otherwise.

(5)

with the obvious initialization F (k, 0) = F (0, k) = 0, ∀k. Thought it requires the computation of
all the W ×H entries of F , the algorithm is very fast in practice.

The following theorem states that the algorithm provides an optimal solution to MTRS, if
an optimal solution satisfying guillotine constraint exists.

Theorem 1 The recursion scheme given in (5) produces the optimal MTRS solution for guillotin-
able among those that satisfy guillotine constraint.

Proof. Without loss of generality, consider the smallest (W,H) instance for which the solution
found is not optimal, i.e., the recursion scheme is exact for allW ×H rectangles such thatW ≤W ,
H ≤ H and one of the two inequalities is strict. As the solution found is guillotinable, it is pro-
duced by a first cut which divides the bin into two smaller parts, and F (W,H) is the sum of the
associated optimal values. Thus, either a better solution exists that uses a different first cut, or the
solutions of the smaller parts are not optimal. This latter case is ruled out because these parts are
both smaller than (W,H). The first case cannot occur as the algorithm considers all possible verti-
cal and horizontal positions for applying the first cut. �

Unfortunately, there are situations in which the optimal solution corresponds to a non
guillotinable pattern (see, e.g., the right packing in Figure 1); in these cases, the algorithm produces
a heuristic (non necessarily optimal) solution, i.e., an upper bound on the optimal solution value.
4. Exact solution of MTRS

In this section we examine three exact approaches to the solution of MTRS. The first one
applies an ILP solver to the formulation of Section 2, whereas the remaining two schemes are based
on a simple relaxation that is possibly strengthened by the addition of valid inequalities in two
different ways.

2429

Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

4.1. Approach 1: Direct use of an ILP solver
An immediate way for solving MTRS is to run any ILP solver on the mathematical model

(2)–(4) given in Section 2. To take full advantage of the internal heuristics that are commonly
embedded in commercial ILP solvers one can warm start the model with a heuristic solution. For
example, one can define a “dummy” solution in which the rectangular bin is split into W × H
unit-square items or, even better, derive a heuristic solution by executing the heuristic algorithm
described in Section 3.

As already anticipated, this simple formulation may be solved in a very efficient way for
small values of W and H . For larger instances, the solver may not be able to provide an optimal
solution, but can possibly produce an improved heuristic solution. However, large values of W
and H produce a huge number of variables and constraints, which makes it impossible to solve the
associated model and, in some cases, even to define it due to memory requirement.

4.2. Approach 2: Enumerate-and-cut algorithm
In this section we describe an alternative approach based on the definition of a simple

ILP model that describes a relaxation of the problem; valid inequalities are added on the fly to the
formulation, possibly in an iterative fashion, until a feasible solution is produced.

4.2.1. A one-dimensional relaxation
A simple lower bound on the optimal solution value of a MTRS instance can be obtained

by solving the following ILP model

min
W∑
t=1

xt (6)

W∑
t=1

t2 xt =W H (7)

xt ≥ 0 integer t = 1, . . . ,W (8)
W∑
k=t

xk ≤ Ut t = 1, . . . ,W (9)∑
t>W/2

t xt ≤ H (10)

∑
t>H/2

t xt ≤W (11)

where each variable xt indicates the number of t× t items in the solution, z̃ denotes the value of a
feasible solution for MTRS and

Ut := min(z̃, bW
t
c bH

t
c) (12)

represents the maximum number of t× t items to be considered (see below).
The model defined by (6)–(8) corresponds to the 1-dimensional relaxation of the problem

in which only the area of each candidate item (and of the bin) is taken into account. A similar re-
laxation was addressed for the two-dimensional knapsack problem by Caprara and Monaci (2004),
who established the worst-case performance analysis of the resulting bound. The resulting model
corresponds to a Change-Making Problem, which has been proved be NP-hard in the general case,
though efficient algorithms for its solution are available, see, e.g., Martello and Toth (1990).

As to constraints (9), note that in any feasible solution the maximum number of t×t items
is bounded by bWt c b

H
t c. As we assume a feasible solution of value z̃ is available, each variable xt

can be bounded by Ut, defined by (12). This immediately leads to inequalities (9) through a lifting
operation.

2430

Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

Finally, inequality (10) bounds the total maximum height of “large” items, i.e., items that
are larger than half of the width of the bin and cannot be packed side by side; similarly, (11) gives
an upper bound on the total width of “tall” items.

4.2.2. Strengthening the relaxation
Let us add to the ILP relaxation of the previous model the following additional variables

ytk =

{
1 if xt = k;
0 otherwise

(t = 1, . . . ,W ; k = 1, . . . , Ut) (13)

that are linked to the x variables as follows

xt =

Ut∑
k=1

k ytk t = 1, . . . ,W (14)

and should satisfy immediate constraints that impose at most one such variable be selected for each
possible size t, i.e.,

Ut∑
k=1

ytk ≤ 1 t = 1, . . . ,W. (15)

Using the y variables, it is possible to add to the formulation a number of constraints, as
stated by the following theorems.

Theorem 2 The following inequalities

W−t∑
p=1

p2 xp ≥ t (W − t)xt t = bW
2
c+ 1, . . . ,W − 1 (16)

and
H−t∑
p=1

p2 xp ≥ t (H − t)xt t > bH
2
c+ 1, . . . ,W (17)

are valid for any feasible packing.

Proof. Let us prove the validity of (16) for a given t value. First observe that the inequality is
redundant if either t = W (in which case the constraint is omitted) or xt = 0. Otherwise, all the
t× t must be packed one above the other, leaving a free space having width W − t and height t xt.
This free space must be entirely filled with items whose side is at most W − t, which yields (16).
Equations (17) can be derived with a similar reasoning, swapping the role of W and H , and can be
imposed also for t =W . �

Theorem 3 Let k ∈ {1, . . . , UW } and define W = min(W,H − kW) and H = max(W,H −
kW). Then, the following inequalities

W−t∑
p=1

p2 xp ≥ t(W − t)xt −M(1− yWk) t = bW
2
c+ 1, . . . ,W − 1 (18)

and
H−t∑
p=1

p2 xp ≥ t(H − t)xt −M(1− yWk) t = bH
2
c, . . . ,W (19)

where M is a “sufficiently large” value, are valid for any feasible packing.

2431

Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

Proof. For each value of k, all the associated inequalities are deactivated if yWk = 0, i.e., in case
the number of W ×W items in the solution is different from k. Otherwise, all such items must
be packed one above the other, leaving a residual bin with width W and height H = W − kW .
Applying Theorem 2 to this residual bin, one immediately gets (18) and (19). �

The following Theorem characterizes inequalities similar to those provided by Theorem
2, but addressing “small” items, i.e., having width not larger than W/2.

Theorem 4 The following inequalities

W−t∑
p=1

p2 xp ≥ t(W − t)yt1 t = 1, . . . , bW
2
c (20)

and
H−t∑
p=1

p2 xp ≥ t(H − t)yt1 t = 1, . . . , bH
2
c (21)

are valid for any feasible packing.

Proof. The proof is similar to that of Theorem 2; the only difference is that we cannot use xt
variables in the right hand side, as t × t items can be packed side by side, and have to weaken the
constraint by using variables yt1. �

4.2.3. Exact solution of MTRS
Given a solution of the model, one can define the corresponding set of squares by intro-

ducing k identical t× t items for each variable ytk that takes value 1. We say that such a set of items
is packable if it is possible to allocate all the items, without overlapping, to the given rectangular
bin. Note that, due to constraint (7), the produced set of items always covers the entire rectangular
bin, thus infeasibility can be due to two-dimensional aspects only. To cut infeasible solutions, one
can add to the formulation the following clique inequalities∑

(t,k)∈C

ytk ≤ |C| − 1 C ∈ C (22)

where C denotes the set of (exponentially many) subset of y variables associated with sets of items
C that turn out to be not packable. This approach can be seen as a Benders’ decomposition, see
Benders (1962), in which the feasibility check for the slave is an NP-hard problem, as it corresponds
to the problem of checking whether a given set of items fits into a bin or not. Indeed this feasibility
checks, described in the next section, turns out to be by far the most time consuming part of the
computation for our approach.

4.2.4. Checking feasibility
The problem of checking the feasibility of a given set of items can be solved in two

different ways:

• pack all items into the minimum number of W ×H bins, and check if a solution exists that
uses only one bin;

• pack all items into a unique strip of widthW and infinite height, and check if a packing exists
with total height not larger than H .

2432

Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

1

2

3
4

5

sa

sb

sc
sd

Figure 2: Envelope and corner points associated with item set S = {1, 2, 3, 4, 5}.

The former corresponds to solving a 2BP instance, whereas the latter asks for the solution of a
two dimensional strip packing (2SPP) problem. In our algorithm we used the latter option, and
implemented an enumeration scheme that packs one item at a time according to the concepts of
envelope and corner points (see Figure 2). At each node of the enumerative tree, denoting by S
the set of items that are actually allocated, we compute the associated corner points and generate a
number of descendant nodes, each associated to the placement of each item j 6∈ S in each corner
point, see Martello et al. (2003) for details.

To speed up enumeration, at each node we use only simple fathoming criteria, based on
the consideration that any feasible solution cannot leave uncovered areas. Thus, a backtracking
occurs if one of the following conditions holds:

• the area below the current envelope is strictly smaller than the area of the items is S;

• a corner point exists in which no item j 6∈ S can be allocated;

• an item j 6∈ S exists that cannot be allocated to any corner point.

The algorithm is halted as soon as a feasible solution is found, i.e., when all items have
been allocated without overlapping to the given rectangle.

4.3. Approach 3: Branch-and-cut algorithm
A third exact algorithm can be obtained by integrating the feasibility check within the ILP

solver. In particular, we assume that the solver can be controlled through a callback function invoked
each time the incumbent is going to be updated—as it happens in many modern solvers. We can thus
run the solver on the relaxed model described in sections 4.2.1 and 4.2.2, using the feasibility check
described in Section 4.2.4 every time a candidate set of items is found. The resulting algorithm,
that resembles the scheme proposed by Miliotis (1976) for the Travelling Salesman Problem, may
turn out to be advantageous as it explores a single tree, including the (generally time consuming)
root node that involves preprocessing, cut generation, and so on. On the other hand, the use of
callback functions may deactivate some properties of the solver, which can turn in a worsening of
the algorithm’s performances.

Intermediate schemes that check for feasibility with a given frequency can be devised,
though their design is out of the scope of the present paper.

2433

Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

5. Computational experiments
All algorithms were coded in C language and run on an Intel Xeon E3-1220 V2 in single-

thread mode with a time limit of 1,800 seconds per instance. All the ILP models were solved by
using IBM-ILOG Cplex 12.5.1 (CPLEX in the following), possibly using callback functions.

To test the effectiveness of our algorithms, we randomly generated a small set of instances,
as follows: the heightH is randomly chosen as an integer from a uniform distribution in the interval
[2, H], whereH is a parameter. Then, the widthW of the rectangle is generated as a random integer
in two different ways, so as to define two different classes:

• R rectangular instances: for a givenH , the value ofW is uniformly distributed in [H/4, 3H/4],
i.e., the height of the bin is quite larger than its width;

• Q quasi-square instances: for a given H , the value of W is uniformly distributed in [H −
5, H − 1]. For these problems there is a small difference between H and W , which produces
bins that are quite similar to a square.

As to the maximum height of the bin, we defined:

• small instances (H ≤ 50),

• medium instances (50 < H ≤ 100), and

• large instances (100 < H ≤ 250).

For each class and value of H , we randomly generated 10 instances; thus a benchmark of
60 instances was obtained. Table 1 reports the outcome of our preliminary computational experi-
ments for each class and range for H . To evaluate the performances of the heuristic algorithm of
Section 3 we computed, for each instance, the ratio between the solution provided by the algorithm
and the optimal solution value (in case the optimal was not available, the best known solution was
used). The average value of such ratio is reported in column “ratio”, whereas column “#best” gives
the number of cases in which the heuristic algorithm produced the (either optimal or) best known
solution for a given instance. As to the exact algorithms of Section 4, we give the number of in-
stances solved to proven optimality and the average computing time in seconds (columns “#opt”
and “time”, respectively). In addition, for the first exact approach we report the total number of
cases in which CPLEX could not be started due to excessive size of the model (“#fail”), whereas
for the remaining two algorithms we give the average number of feasibility executions of the two-
dimensional packing routine (“#check”).

Instances Heuristic CPLEX Enumerate-and-cut Branch-and-cut
ratio #best #opt time #fail #opt time #check #opt time #check

small 1.162 5 10 77 0 7 549 734 7 542 1826
H medium 1.050 9 1 1333 2 0 1800 1347 1 1648 6192

large 1.000 10 0 0 10 0 1800 632 0 1800 1910

small 1.000 10 10 0 0 10 0 1 10 0 1
R medium 1.000 10 7 817 0 4 1177 1198 7 660 2967

large 1.000 10 0 360 8 1 1797 910 3 1448 3573

Table 1: Initial heuristic and exact algorithms on PSS instances

Computational experiments show that the heuristic algorithm provides very good solu-
tions, which can be improved only in a few cases by the exact algorithms. The first exact algorithm

2434

Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

is very effective for small instances, whereas is fails due to memory requirement for most of the
large instances (namely, in 18 cases out of 20). As to the remaining two algorithms, branch-and-cut
proves to perform better than enumerate-and-cut, at least on our small testbed, as it solves a larger
number of instances and has an average smaller computing time, although the number of calls to
the routines that check packing feasibility is considerably larger.

6. Conclusions
In this paper we introduced a Two-Dimensional packing problem in which one is required

to split a given rectangular bin into a minimum number of non-overlapping square items. For this
problem we proposed an ILP model and a heuristic algorithm that is proved to produce the opti-
mal solution in relevant situations. Then, we proposed a mathematical model for a relaxation of
the problem, which is embedded into two enumerative schemes. Preliminary computational experi-
ments are provided to tested the effectiveness of the algorithms on a small set of randomly generated
instances. Our preliminary results suggest that the direct use of an ILP solver is not suitable when
large instances are addressed. In addition, the initial relaxation embedded into the remaining exact
algorithms has to be strengthened to face with hard instances, which requires the definition of new
valid inequalities. Future work should also consist in creating a larger set of instances, possibly
including problems with some known characteristics (e.g., instances for which the optimal solu-
tion is always guillotinable) so as to draw more accurate conclusions on the performances of the
algorithms above.

Acknowledgment
This project was partially supported by CAPES - Coordenação de Aperfeiçoamento de

Pessoal de Nı́vel Superior (Grant 030479/2013-01, PVE / Ciência sem Fronteiras).

References
Beasley, J.E. (1985), An exact two-dimensional non-guillotine cutting tree search, Operations Re-
search, 33, 49–64.
Beaumont, O., Boudet, V., Rastello, F. e Robert, Y. (2002), Partitioning a Square into Rectangles:
NP-Completeness and Approximation Algorithms, Algorithmica, 34, 217–239.
Benders, J.F. (1962), Partitioning procedures for solving mixed-variables programming problems,
Numerische Mathematik, 4, 238–252.
Brooks, R., Smith, C., Stone, A. e Tutte, W. (1940), The Dissection of Rectangles into Squares,
Duke Mathematics journal, 7, 312–340.
Caprara, A. e Monaci, M. (2004), On the two-dimensional knapsack problem, Operations Re-
search Letters, 32, 5–14.
Kenyon, R. (1996), Tiling a Rectangle with the Fewest Squares, Journal of Combinatorial Theory,
76, 272–291.
Kurz, S. (2012), Squaring the Square with Integer Linear Programming, Journal of Information
Processing, 20, 680–685.
Lodi, A., Martello, S., Monaci, M., Cicconetti, C., Lenzini, L., Mingozzi, E., Eklund, C. e
Moilanen, J. (2011), Efficient two-dimensional packing algorithms for mobile WiMAX, Manage-
ment Science, 57, 2130–2144.
Lodi, A., Martello, S., Monaci, M. e Vigo, D., Two-dimensional bin packing problems, V.Th.Paschos
(Ed.) Paradigms of Combinatorial Optimization, Wiley/ISTE, 107–129, 2010.
Martello, S., Monaci, M. e Vigo, D. (2003), An exact approach to the strip packing problem,
INFORMS Journal on Computing, 15, 310–319.
Martello, S. e Toth, P., Knapsack Problems: Algorithms and Computer Implementations, John
Wiley & Sons, Chichester, 1990.
Miliotis, P. (1976), Integer programming approaches to the travelling salesman problem, Mathe-
matical Programming, 10, 367–378.
Walters, M. (2009), Rectangles as sum of squares, Discrete Mathematics, 309, 2913–2921.

2435

