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ABSTRACT

This work presents computational complexity results involving scheduling
in parallel systems subject to very small or too large communication delays. We
propose polynomial time algorithms for two cases, both when a sufficient number
of machines is available. For the first algorithm, the precedence relations among
tasks are restricted to a descendant tree. For the second one, we show that if task
duplications are allowed, it is possible to schedule subject to arbitrary precedence
relations. Moreover, we show that if the number of machines is given at execution
time, the problem becomes NP-hard even if a precedence relations consist of a set
of chains. This also occurs when a fixed number of only two processors are avail-
able and general precedence relations are allowed. These results are an important
contribution in scheduling theory to apply in parallel and distributed systems (clus-
ter, grid, cloud/global computing) in a large range of real world problems including
industrial production, airlines planning, computer systems, and so on.

Keywords: algorithms, communication delay, computational complexity, direct
acyclic graph, parallel systems, scheduling theory.

Main areas: OC - Combinatorial Optimization; TAG - Theory/Algorithms in
Graphs.

1. Introduction

Scheduling constitutes a major and relevant class of problems in operations re-
search. Applications can be found in industrial production, airlines planning, or
computer systems. One of the most common aim of a scheduling problem is to
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minimize the processing time of the last task to be scheduled (the makespan), sub-
ject to some constraints.

In many applications a collection of tasks may be required to be processed
on the same machine. This restriction is possibly found on several cases. For exam-
ple, in an industrial production process, some materials produced in a certain station
may not be allowed to be transported to others substations, being necessarily pro-
cessed on the current one. Another application consists of task allocation routines
in multi-processing systems. Some computer routines might generate a large quan-
tity of data that is used by some other task. If the delay imposed by transferring the
data from a processing unit to another one is too large, the scheduling of these tasks
in another processor could become unfeasible. In fact, this type of constraint can
represent task scheduling under communication delays that are either negligible or
infinitely large.

This paper presents results subjected to this communication delays when
unit time task are considered and some precedence ordering is imposed. We show
that, when sufficient number of processors are available, the problem is polynomial
if the precedence relation are restricted to an out-tree or when computing the same
task in different processors is allowed. Also, we present NP-hardness proofs for
two cases, the first when the number of processor is arbitrary and the second when
any precedence relation is permitted.

Scheduling theory employs a usual notation, adopted throughout this pa-
per [8] [13].

This text is organized as follows. In Section 2, we present definitions and
concepts relevant to the work. The proposed algorithms and NP-hardness proof are
given in Section 3. Finally, in Section 4, we present the concluding remarks.

2. The Scheduling Problem

The scheduling problem considered in this work involves a set of identical parallel
processors P = {Pj, ..., P,,}, which may be limited by a number m (a fixed one
or given in an problem instance), or unlimited (alternatively, we can suppose to be
as large as the number of available tasks). These processors are used to execute
a set of tasks or jobs J = {Ji, ..., J,,}. Each job J; (j € {1,...,n}) has a unit
processing time e.g. [2], [3]. A job can be processed in only one processor or can
have several copies placed in different processors, this possibility is referenced as
tasks duplication. Each processor can process at most one job at a time, and each
copy of a job can be processed by at most one machine at a time. The tasks pro-
cessing ordering is restricted by a precedence relation < g, represented by a directed
graph G = (J, E), where E is a ordered pair of tasks in J. A path is a sequence of
edges in E for which every consecutive edges, e; succeeded by e, 1, must be so that
e; = (u,v) and e;1; = (v,w). The set of vertices for which exists a path to some
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vertex v is defined as the predecessors of v. The set of vertices for which exists path
from v to them is defined as the descendants of v. The immediately descendants
(respectively predecessors) of v are the set of vertices u for which exists (v, u) € E
(respectively (u,v) € F). The precedence relation for the considered problems can
be an arbitrary one, an out-tree, that is when every task has at most one immedi-
ately predecessor which may be referenced as the parent task, or yet a set of chains,
where every task has at most one immediately predecessor and at most one imme-
diately descendant. At last, each edge in E is associated to a communication delay,
through a function C' : E — {0, 00}, which can be either negligible or infinitely
large (again, alternatively, we can suppose to be as large as the number of tasks).

2.1. Previous Works

The problem of finding the minimum makespan has been extensively studied. It
is known to be NP-hard even if only two processors are considered and having no
precedence relation (P||C),q.) [7]. Also, although this problem admits a pseudo-
polynomial algorithm [14], it becomes strongly NP-hard if a special precedence
relation consisting of a set of chains is imposed (Pz|chains; |Cyuqaz) [4]. These
results indicate that in order to obtain polynomial-time algorithms, one must re-
strict the problem by some other constraint. An important and well-studied ad-
ditional constraint concerns the tasks processing time. When only unit execution
time tasks are considered, a polynomial algorithm for arbitrary precedence relation
(Py|prec; pj = 1|Cinay) 18 known [6]. However, this problem becomes NP-hard if
the unit processing time constraints are relaxed as to also admit two unit processing
time per jobs (P |prec; p; € {1,2}Chas) [16].

Communication delays have been introduced around the earlies eighties, for
modeling the cost of transferring data from one processor to another. More pre-
cisely, communication delays are assigned to pairs of tasks for which some prece-
dence relation is described. It imposes that for each such pairs, if the first task is pro-
cessed on a different processor than the second one, it may only be processed after
the specified delay time. Thus, when such communication delays are considered, a
scheduling problem over a unlimited number of processors (Px|prec; |Ciuqz) turns
from easy to NP-hard, even if the precedence constraints are restricted to an out-tree
(P | out-tree; ¢; j|Crnaz) [1]. Although, by restricting the precedence relation to a
tree, it is possible to find the minimum makespan in pseudo-polynomial time [S5].
The problem remains NP-hard even when communication delays are also imposed
to be fixed to a unit time. In fact, for this problem (P |prec;c = 1;p; = 1|Chaa)
the total schedule length is to be limited to five units of time, otherwise no polyno-
mial time algorithm is possible (except if P = N'P) [9]. Also, by adding delays,
it may be preferable to process the same task on different processors than to have
to wait for the data to be transferred. Unfortunately, the problem remains NP-hard
even if along with this assumption all tasks are imposed to be a unit execution time
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(Px|prec; ¢; dup; p; = 1|Chnay) [12], again, it has been shown that this problem
admits pseudo-polynomial algorithm on the communication delay [11].

3. Proposed Results

In this section, we present our results involving the scheduling problems with large
communication delays described previously, organized in two parts. The first one
contains the polynomial time results, where we explain the proposed algorithms for
two special cases. In the second part, the NP-hardness computational complexity
results are presented for two other cases.

3.1. Polynomial Time Results

We determined the polynomial complexity of two scheduling problems that con-
sider an unlimited number of processor

3.1.1. Pylout-tree,c;; € {0,00},p; = 1|Cpaa

In this subsection, we present the polynomial complexity proof of the scheduling
problem P | out-tree ,c;; € {0,00},p; = 1|Ciyaz, involving an unlimited num-
ber of parallel processors, the minimum makespan optimization criteria, and a set
of tasks subject to a unit processing time, out-tree precedence relations, and com-
munication delays restricted to zero or infinity. Thus, first, we give the following
definition:

Definition 1: A inf-connected-tree is the maximal set of vertices connected
by edges associated to infinitely large delays. For some vertex v, we define inf-
connected-tree(v) to be the inf-connected-tree that it belongs to.

If the precedence relation is restricted to be an out-tree and an unlim-
ited number of processors are available, it is possible to recursively solve each
negligible-connected subtree, that is, a maximal subtree rooted at a vertex v whose
parent belongs to the same inf-connected-tree of the tree root, but v itself does not
(see Figure 1). As all vertices of the same inf-connected-tree must be processed on
the same processor, they are to be schedule to form a total ordering. Also, there are
no reasons for them not to be processed consecutively, so if ¢, is the slot allocated
to the root, then the slots allocated to the vertices on the same inf-connected-tree
are into {¢,,t, + 1,....t, + |T,|}. We define order and priority as follows:

Definition 2: The order of a vertex v related by a scheduling S, orders(v),
is the number of vertices from the same inf-connected-tree that were scheduled
before v in S, plus one.

Definition 3: The priority of a vertex v related by a scheduling S,
prioritys(v), is defined as the maximum makespan among the negligible-
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connected-subtrees which roots are descendant of v. If no such subtrees exists,
the prioritys(v) = 0 (See Figure 1).

By such definitions, we verify the following lemma.

Lemma 1: The total schedule time, ¢g, for some given scheduling S of a
tree, T,., rooted at some vertex r is equal to max{orderg(v) + prioritys(v)}, Vv €
inf-connected-tree(r).

Each v in inf-connected-tree(r) are clearly scheduled no later than max{
orders(u) +prioritys(u)}, Yu € inf-connected-tree(r), as each such vertex is
schedule precisely in slot orderg(v).

Also, let v in inf-connected-tree(r) have some negligible-connected-subtree.
All vertices in such subtree are schedule no latter than orderg(v) + prioritys(v),
as v is schedule on slot orderg(v) and, by definition, the prioritys(v) is greater or
equal the makespan of any negligible-connected-subtree descendant of v.

At last, let v be one vertex which orderg(v) + prioritys(v) is maximum
among the vertices in inf-connected-tree(r). So, v has no immediately descen-
dant vertex u in inf-connected-tree(r) such that prioritys(v) = prioritys(u),
because certainly orderg(u) > orderg(v) and this would contradict the fact
that orderg(v) + prioritys(v) is maximal. If no such immediately descendant
exists, either prioritys(v) = 0 or there must be an immediately descendant
that is a root of a negligible-connected-subtree for which makespan scheduled
by S equal to prioritys(v). So after v is scheduled, the processing from all
negligible-connected-subtree which roots are immediately descendants o v finish
its processing precisely on prioritys(v) units of time. So, the schedule time must
be at least max{orderg(v) + prioritys(v)}.

If the inf-connected-tree from the root has no negligible-connected-subtree,
the minimum schedule time is the number of vertices of the tree, as all vertices must
be processed on the same processor. If the tree contains negligible-connected sub-
trees, in order to execute all tasks in a minimum time, a natural strategy is to start
the negligible-connected-subtrees as soon as possible. The intuitive reasoning for
this is that the computation of distinct negligible-connected-subtrees may occur in
parallel, while the computation of vertices from the same inf-connected-tree can-
not. Also, an argument can be made in favor to prioritize the negligible-connected-
subtree that needs more time to complete its processing. In fact, the following
theorem shows that an optimal schedule is achieved if among all ready task from
the same inf-connected-tree we choose a vertex with maximum priority.

Theorem 1: A schedule that among all ready tasks choose those with max-
imum priority is optimal. Let S be obtained by iteratively choosing vertices of
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Figure 1. The figure represents an oui-tree instance. Dashed lines represent the
negligible communication delays and continuous lines correspond to the infinitely
large delays. Two inf-connected-trees are shown, one composed by the dark grey
vertices and the other by light grey ones. The triangle nodes are roots of negligible
subtrees. Also inside each vertex is indicated its priority.
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Figure 2. The figure represents an optimal schedule for the out-tree shown on
Figure 1.

maximal priority to be scheduled first between those in the same inf-connected-
tree. Also, let tg be its completion time.

If the tree that has no negligible-connected-subtrees, all vertices ought
to be computed on the same processor. Therefore, any S is optimal. Other-
wise, suppose the tree contains negligible-connected-subtrees. By induction as-
sume them to be scheduled at its minimal scheduled time. So, by Lemma 1,
ts = max{orderg(v) +prioritys(v)}, Yv € inf-connected-tree(r). For all v,
prioritys(v) is set the minimal possible value among any valid schedule. Also,
the orders of the vertices are {1,2, ..., |inf-connected-tree(r)| }. So, in order to mini-
mize max{orders(v) + prioritys(v)}, one must add the maximum priorities with
the minimum orders. Clearly, S schedules in such way.

We claim this theorem implies the schedule to be optimal.

3.1.2. Pylprec,c;; € {0,00}, dup, p; = 1|Crax

In this subsection, we present the polynomial complexity proof of a similar schedul-
ing problem from the previous subsection. This problem admits an arbitrary prece-
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Figure 3. The figure represents a direct acyclic graph. Again, dashed lines rep-
resent negligible communication delays while continuous lines represent infinitely
large ones. In grey are the inf-connected-predecessors of the vertex E.

dence constraint. Also, a task may be executed in different processors (duplication
tasks). We first define the notation employed.

Definition 4: The inf-connected-predecessors of some vertex v, inf-
connected-predecessors(v), is the maximum set of vertices connected by edges as-
sociated to infinitely large communication delays which v belongs.

By allowing duplication tasks, it is possible to schedule same task to be
processed in several processors. As the number of processors is unlimited, it is
feasible to designate a processor that would be dedicated to process a copy of each
task at its minimum scheduling time. The purpose is not to delay the schedule of
the negligible-connected-descendants. Although, it is necessary, in order to process
any copy of a task, to have a copy from each inf-connected-predecessors of this
vertex processed at the same processor. The schedule of these tasks can proceed
recursively, according to the order of minimum scheduled times (see Figure 3).

r=1|r=2]7r=3]1=4]7T=5|1=6]T=7]7=7
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Figure 4. The figure represents the corresponding schedule from the direct acyclic
graph on Figure 3.
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Theorem 2: The process described above obtains an optimal scheduling.

A vertex that has no predecessor is clearly scheduled at its minimum sched-
ule time on its assigned processor. For the others, suppose that every predecessor
has been scheduled at its minimum schedule time on some other processor. Then,
the set of vertices in inf-connected-predecessors which have minimum schedule
time is trivially scheduled in the optimality. Recursively, the next set of minimum
schedule time predecessors will be scheduled on the first empties slots after their
minimum schedule time.

We claim this theorem implies the schedule to be optimal.

3.2. NP-hardness Results

In this section, we describe NP-hardness cases of the problem of scheduling unit
tasks with large communication delays.

3.2.1. P|chains,c;; € {0,00},p; = 1|Cpaa

The problem of scheduling under these communication delays on a limited num-
ber of processors indicated at the instance of the problem is closely related to the
problem studied by Sevastyanov when task preemption are considered along with
non-negligible migration delays [15]. We show our problem is NP-hard by reduc-
tion from the 3-Partition Problem, which is known to be strongly NP-hard. In fact,
we consider the decision version of both problems, defined as follow:

3-PARTITION PROBLEM

In: Given an instance, (A), of a set of positive integers, such that |A| = 3m for
some m and for each q; € A qulm <a; < S“Tm where Sum is the sum of elements
of A.

Out: To decide whether it is possible for A to be partitioned in m subsets such
that the sum of the elements of every subset is equal.

ARBITRARY PROCESSOR PROBLEM

In: An instance is described as (Chains, C, P,t), such that Chains is a set of
chains, C' corresponds to the communication delays assigned to par of consecutive
vertices in some chain the value 0 or oo, P is the number of available processors,
and ¢ is an integer.

Out: To decide whether there exists a schedule whose makespan is < t.
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Theorem 3: The ARBITRARY PROCESSOR PROBLEM is in NP-
complete.

The problem is clearly in NP by using the scheduled itself as a certificate.

Given any instance of the 3-PARTITION PROBLEM let us construct an
instance of the ARBITRARY PROCESSOR PROBLEM by the following manner:

For every element a; € A, add a chain; € Chains containing a; jobs and
such that C'(J;, Ji,) = oo for every consecutive tasks in chain;. Also, define P = m
and t = 54 Recall that Sum is Y. a;.

a;€EA

Let chain; be any of the considered chains. As every task of chain; must be
processed in the same processor due to the communication delays, a valid schedul-
ing naturally creates a partition of the chains into the processors. The partition of
A induced by the association of each elements a; with chain; is a valid partition
for the 3-PARTITION PROBLEM. This is because the total number of slots up to
t equals to P x t which is the total of tasks. This implies that to every processor is
assigned S“Tm tasks from accurately three distinct chains.

Also, if there is some valid partition for the 3-PARTITION PROBLEM, this
partition can be used to schedule the chains in C'hains by processing on the same
processors chains associated with elements from the same partition. Clearly, this
scheduling respects the constraints imposed by C' and the time ¢.

3.2.2. P2|prec, CZ'J' € {0, OO},pj = 1|Oma:r:

When an arbitrary precedence relations can be imposed, scheduling unit tasks under
large communication delay constraints becomes a NP-hard problem for any number
of processors other than one. Moreover, the decision problem corresponding to this
problem is NP-complete. This is consequence of the NP-completeness of a problem
studied by Jansen [10]:

SCHEDULING TYPED TASK

In: An instance is given by (Chains, Pred, t), such that Chains is a set of chains,
Pred is a function that assigns one of the two available processors (referenced as
P, P,), and t an integer.

Out: To decide whether there is some schedule having makespan < t.

The problem handled in this subsection is defined as below:
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Figure 5. The figure describes a transformation from a set of three chains. Each
task may be either grey or left unfilled, representing the two groups of tasks with
the predefined processors. The tasks S, and S, are added along with infinitely large
communication edges represented by continue lines, while the edges that connect
any pair of tasks belonging to the same chain are dashed, representing negligible
communicating delays.

Figure 6. The figure shows the optimal scheduling for the Figure 5 along with the
edges. Notice that continuous edges must not connect tasks scheduled in distinct
processors.

SCHEDULING UNDER ARBITRARY PRECEDENCE

In: (G = (V,E),C,t), where G represents a directed acyclic graph, C' represents
communication delays between pairs of tasks (C' : £ — {0,00}), and ¢ is an
integer.

Out: To decide whether there is a schedule having makespan < .

The following theorem shows the NP-completeness of the SCHEDULING
UNDER ARBITRARY PRECEDENCE RELATIONS problem.

Theorem 4:  Scheduling under arbitrary precedence relations is
NP — complete.
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Again, the problem is in NP as the scheduling itself may be used as a
certificate. 'We propose a reduction from the SCHEDULING TYPED TASK
will be used to show that the problem is in NP — hard. Given any instance
of (Chains, Pred,t) from the SCHEDULING TYPED TASK problem, let be
G = (V,E) such that V is the set of tasks in each chain with two additional
tasks, named Sy and S;. F also contains the edges in C'hains along with edges
that originates on Sy (respectively S7) and is directed to every task that has P;
(respectively P») as the predefined processor. For edge e that originates in Sy or 51,
set C'(e) = oo, for the others set the delays to zero. For the integer ¢, define it to be
the same as for the instance of the SCHEDULING TYPED TASKS problem (See
Figure 6). For the given construction, after Sy and S are scheduled, it is clear that
the constraints imposed are equivalent on both problems.

4. Concluding remarks

This paper describes results on minimizing the makespan on scheduling problems
subjected to communication delays fixed as 0 or co. There has been demonstrated
that, when enough processors are available and tasks execution time restricted to
a unit of time, it is possible to find an optimal schedule in polynomial time, if the
precedence is restricted to an out-tree (Pa| out-tree; ¢; j € {0,00};p; = 1|Chaa)
or if task duplications are allowed (P |prec; c; ; € {0,00}; dup; pj = 1; |Craz)-

Also, we have shown a few NP-hardness results for unit time execution
tasks. The first considers that the number of available processors is part of the
instance even if the precedence are restricted to a set of chains (P|chains;c;; €
{0,00};pj = 1;|Cinaz)- The second considers that a fixed number of pair of pro-
cessors are available (P|prec;c;; € {0,00};p; = 1;|Chuaz). These results leave
open some questions: is it NP-complete to decide when there is a fixed number of
processors, and when the precedence relation is somehow restricted.
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