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RESUMO

Este trabalho considera o problema de agrupamento segundo o critério de mı́nima soma
de quadrados de distâncias. Sua formulação é do tipo min − sum −min, que, em adição a sua
intrı́nseca natureza dois-nı́veis, tem a significante caracterı́stica de ser fortemente não-diferenciável.
O método de resolução proposto adota uma estratégia de suavização que engendra um problema ir-
restrito completamente diferenciável C∞. O algoritmo proposto aplica também uma partição do
conjunto de observações em dois grupos disjuntos: “dados na fronteira” e “dados nas regiões gra-
vitacionais”, que drasticamente simplifica as tarefas computacionais. Resultados de experimentos
numéricos em tradicionais problemas teste da literatura mostram um desempenho inaudito da me-
todologia proposta.
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ABSTRACT
This article considers the minimum sum-of-squares clustering (MSSC) problem. The

mathematical modelling of this problem leads to a min − sum − min formulation which, in
addition to its intrinsic bi-level nature, has the significant characteristic of being strongly non-
differentiable. The proposed resolution method adopts a smoothing strategy which engenders an
unconstrained completely differentiable problem C∞. The proposed algorithm applies also a par-
tition of the set of observations into two non overlapping groups: “data in frontier” and “data in
gravitational regions”, which drastically simplify the computational tasks. Results of numerical ex-
periments on traditional test problems of the literature show an unprecedented performance of the
proposed methodology.
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1. Introduction
Cluster analysis deals with the problems of classification of a set of patterns or obser-

vations, in general represented as points in a multidimensional space, into clusters, following two
basic and simultaneous objectives: patterns in the same clusters must be similar to each other (ho-
mogeneity objective) and different from patterns in other clusters (separation objective), as recorded
by Anderberg (1973), Hartingan (1975) and Späth (1980).

In this paper, a particular clustering problem formulation is considered. Among many
criteria used in cluster analysis, the most natural, intuitive and frequently adopted criterion is the
minimum sum-of-squares clustering (MSSC). The minimum sum-of-squares clustering (MSSC)
formulation produces a mathematical problem of global optimization. It is both a non-differentiable
and a non-convex mathematical problem, with a large number of local minimizers.

There are two main strategies for solving clustering problems: hierarchical clustering
methods and partition clustering methods. Hierarchical methods produce a hierarchy of partitions
of a set of observations. Partition methods, in general, assume a given number of clusters and,
essentially, seek the optimization of an objective function measuring the homogeneity within the
clusters and/or the separation between the clusters. Heuristic algorithms of the exchange type as
the traditional k-means (Mc Queen (1967)) and its modern variations [Likas et al (2003), Bagirov
(2008) and Bagirov et al (2011)] are broadly used in practical applications (Wu et al (2008)).

We adopt a novel strategy: the smoothing of the MSSC clustering problem. For the sake
of completeness, we present first the Hyperbolic Smoothing Clustering Method (HSCM), Xavier
(2010). Basically the method performs the smoothing of the non-differentiable min−sum−min
clustering formulation. This technique was developed through an adaptation of the hyperbolic
penalty method originally introduced by Xavier (1982). By smoothing, we fundamentally mean
the substitution of an intrinsically non-differentiable two-level problem by a C∞ unconstrained
differentiable single-level alternative.

In second place, we present the Accelerated Hyperbolic Smoothing Clustering Method,
Xavier and Xavier (2011), a new faster implementation. The basic idea is the partition of the
set of observations into two non overlapping parts. By using a conceptual presentation, the first
set corresponds to the observation points relatively close to two or more centroids. This set of
observations, named boundary band points, can be managed by using the previously presented
smoothing approach. The second set corresponds to observation points significantly closer to a
single centroid in comparison with others. This set of observations, named gravitational points, is
managed in a direct and simple way, offering much faster performance.

2. The Hyperbolic Smoothing Clustering Method
Let S = {s1, . . . , sm} denote a set of m patterns or observations from an Euclidean

n-space, to be clustered into a given number q of disjoint clusters. To formulate the original
clustering problem as a min−sum−min problem, we proceed as follows. Let xi, i = 1, . . . , q
be the centroids of the clusters, where each xi ∈ Rn. The set of these centroid coordinates will
be represented by X ∈ Rnq. Given a point sj of S, we initially calculate the Euclidean distance
from sj to the center in X that is nearest. This is given by zj = mini=1,...,q ‖sj −xi‖2. The most
frequent measurement of the quality of a clustering associated to a specific position of q centroids
is provided by the sum of the squares of these distances, which determines the MSSC problem:

minimize

m∑
j=1

z2j (1)

subject to zj = min
i=1,...,q

‖sj − xi‖2, j = 1, . . . ,m
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The Hyperbolic Smoothing Clustering Method performs a set of transformations in
order to obtain a completely differentiable formulation see Xavier (2010) and Xavier and Xavier
(2011). We do so by first letting ϕ(y) denote max{0, y} and by including an ε > 0
perturbation in (1). So, the following modified problem is obtained:

minimize
m∑
j=1

z2j (2)

subject to
q∑

i=1

ϕ(zj − ‖sj − xi‖2 ) = ε , j = 1, . . . ,m.

By using function φ(y, τ) =
(
y +

√
y2 + τ2

)
/2 in the place of function ϕ(y) and

by using function θ( sj , xi , γ ) = (
∑n

l=1 (s
l
j − xli)2 + γ2 )1/2 in the place of the Euclidian

distance ‖sj − xi‖2, the following completely differentiable problem is now obtained:

minimize
m∑
j=1

z2j (3)

subject to hj(zj , x) =

q∑
i=1

φ(zj − θ(sj , xi, γ), τ) − ε = 0, j = 1, . . . ,m.

As the partial derivative of h(zj , x) with respect to zj , j = 1, . . . ,m is not equal
to zero, it is possible to use the Implicit Function Theorem to calculate each component zj , j =
1, . . . ,m as a function of the centroid variables xi, i = 1, . . . , q. In this way, the unconstrained
problem

minimize f(x) =

m∑
j=1

zj(x)
2 (4)

is obtained, where each zj(x) results from the calculation of a zero of each equation

hj(zj , x) =

q∑
i=1

φ(zj − θ(sj , xi, γ), τ) − ε = 0, j = 1, . . . ,m. (5)

Due to property of the hyperbolic smoothing function, see Xavier (2010) and Xavier and
Xavier (2011), each term φ above is strictly increasing with variable zj and therefore the equation
has a single zero.

Again, due to the Implicit Function Theorem, the functions zj(x) have all derivatives
with respect to the variables xi, i = 1, . . . , q, and therefore it is possible to calculate the gradient
of the objective function of problem (4),

∇ f(x) =
m∑
j=1

2 zj(x)∇zj(x) (6)

where

2697



Setembro de 2014

Salvador/BA

16 a 19SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALSIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONALXLVI Pesquisa Operacional na Gestão da Segurança Pública

∇zj(x) = − ∇hj(zj , x) /
∂ hj(zj , x)

∂ zj
, (7)

while ∇hj(zj , x) and ∂ hj(zj , x)/∂ zj are obtained from equations (5) and from definitions of
function φ(y, τ) and function θ( sj , xi , γ ).

In this way, it is easy to solve problem (4) by making use of any method based on
first order derivative information. Finally, it must be emphasized that problem (4) is defined on
a (nq)−dimensional space, so it is a small problem, since the number of clusters, q, is, in general,
very small for real applications.

3. The Accelerated Hyperbolic Smoothing Clustering Method
Xavier and Xavier (2011) introduced a faster procedure to the original Hyperbolic

Smoothing Clustering Method. The basic idea is the partition of the set of observations into two
non overlapping regions. By using a conceptual presentation, the first region JB, the set of
boundary observations, corresponds to the observation points that are relatively close to two or
more centroids, within a specified δ tolerance. The second region JG, the set of gravitational
observations, corresponds to the observation points that are significantly close to a unique centroid
in comparison with the other ones. Considering this partition, equation (4) can be expressed in the
following way:

minimize f(x) = fB(x) + fG(x) =
∑
j∈JB

zj(x)
2 +

∑
j∈JG

zj(x)
2. (8)

The first part of expression (8), associated with the boundary observations, can be cal-
culated by using the previous presented smoothing approach, see (4) and (5). The second part of
expression (8) can be calculated by using a faster procedure:

minimize fG(x) =

q∑
i=1

∑
j∈Ji

‖ sj − vi ‖2 +

q∑
i=1

|Ji| ‖xi − vi ‖2 (9)

where vi is the center of the observations in each non-empty subset:

vi =
1

|Ji|
∑
sj∈Ji

sj , ∀ i = 1, . . . , q. (10)

When the position of centroids xi , i = 1, . . . , q moves during the iterative process, the
value of the first sum in (9) assumes a constant value, since the vectors s and v are fixed. On
the other hand, for the calculation of the second sum, it is only necessary to calculate q distances,
‖ vi − xi ‖ , i = 1, . . . , q.

The gradient of the second part of the objective function is easily calculated by:

∇ fG(x) =

q∑
i=1

2 |Ji| (xi − vi ), (11)

where the vector (vi − xi) must be in Rnq, so it has the first (i− 1)q components and the last
l = iq + 1, . . . , nq components equal zero.
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A Simplified Version of AHSCM Algorithm

Initialization Step:

Choose the starting point: x0

Choose smoothing parameter values: γ1 , τ1 , ε1;

Choose reduction factors: 0 < ρ1 < 1, 0 < ρ2 < 1, 0 < ρ3 < 1;

Specify the boundary band width: δ1;

Let k = 1.

Main Step: Repeat until an arbitrary stopping rule is attained

Determine partitions JB and JB by using tolerance δ = δk.

Calculate centres vi, i = 1, . . . , q of gravitational regions by (10)

Solve problem (8) starting at the initial point xk−1 and let xk be the solution obtained:

For solving the first part
∑

j∈JB zj(x)
2, associated to the boundary band zone, cal-

culate each zero of the equation (5) by using the smoothing parameters: γ = γk, τ = τk and
ε = εk;

For solving the second part, given by (9), use the above calculated centres of the gravi-
tational regions.

Updating procedure:

Let γk+1 = ρ1 γ
k , τk+1 = ρ2 τ

k , εk+1 = ρ3 ε
k

Redefine the boundary value: δk+1

Let k := k + 1.

4. Computational Results
In order to verify the performance of the incremental version of the Accelerated Hy-

perbolic Smoothing Clustering Method, AHSCM algorithm we perform computational experiments
with some traditional test problems of the literature. In order to demonstrate accuracy and effici-
ency of the proposed algorithm we perform a comparison of our computational results with those
presented by Bagirov et al (2013).

This paper presents computational results produced by three different algorithms:
GKM (Likas et al (2003)) - the global k-means , MGKM (Bagirov (2008)) - the modified global
k-means and HSCM an incremental version the original hyperbolic smoothing clustering method
(Xavier (2010)) without the pruning procedure provided by the partition scheme and with initial
starting points generated by an incremental procedure. These numerical experiments by Bagirov et
al (2013) have been carried on a PC Intel(R) Core(TM) i5-34705 with CPU 2.90 GHz and RAM 8
GB.

The numerical experiments associated to the AHSCM algorithm, a new version with
initial starting points generated by an incremental procedure, have been carried out on a PC Intel
(R) Core (TM) i7-2620M Windows Notebook with 2.70GHz and 8 GB RAM. The programs are
coded with Intel(R) Visual Fortran Composer XE 2011 Update 7 Integration for Microsoft Visual
Studio* 2010. The unconstrained minimization tasks were carried out by means of a Quasi-Newton
algorithm employing the BFGS updating formula from the Harwell Library, obtained in the site:

(www.cse.scitech.ac.uk/nag/hsl/).
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Table 1 presents a short description of the 8 used test problems, which correspond to
same medium size and large size data sets considered in the referential work. Test TSPLIB1060,
TSPLIB3038, D15112 and Pla85900 belong to the collection of salesman travel problems organized
by Reinelt (1991) and other belongs to UCI repository:

http://www.ics.uci.edu/mlearn/MLRepository.html.

Data sets Number of instances Number of attributes
Breast cancer 683 9
TSPLIB1060 1060 2
TSPLIB3038 3038 2

Pendigit 10992 16
D15112 15112 2
Letters 20000 16

Shuttle Control 58000 9
Pla85900 85900 2

Table 1. Short description of test problems

The computational results presented below were obtained from a particular imple-
mentation of the incremental AHSCM algorithm. The AHSC-L2 is a general framework that bears
a broad numbers of implementations. In the initialization steps the following choices were made
for the reduction factors: ρ1 = 1/4 , ρ2 = 1/4 and ρ3 = 1/4 . The specification of initial
smoothing and perturbation parameters was automatically tuned to the problem data. So, the initial
smoothing parameter τ1 was specified by τ1 = σ / 10 where σ2 is the variance of set of
observation points: S = {s1, . . . , sm} . The initial perturbation parameter (2) was specified by
ε1 = 4 τ1 and the Euclidean distance smoothing parameter by γ1 = τ1 / 100 . The boundary
width parameter δk at the beginning of each iteration k was specified by using the average
distance between all pairs of the initial position of centroids times α = 0.05 , a fixed factor.

The adopted stopping criterion was the execution of the main step for the ASHCM algo-
rithm a fixed number of 10 iterations. In this way, the final values of the τ , ε , and γ parameters
were reduced to 1/(49) of the initial values. The adopted stopping criteria for the unconstrained
minimization procedure was fixed in all iterations, supplying precise solutions with 10 significant
digits.

Tables 2 - 3 present a synthesis of the computational results produced by the new version
of AHSCM algorithm. For each data set, we vary the number of clusters q = 2, 5, 10, 15, 20 and
25. For each data set and for each number of clusters, only one initial starting point was used.
The first columns show the number of clusters (q) and the putative global optimum (fopt),
that is the best known solution produced at all times. Then, for each algorithm: GKM - the glo-
bal k-means, MGKM - the modified global k-means, HSCM - the original hyperbolic smoothing
clustering method with initial starting points generated by an incremental procedure and the novel
version of AHSCM - algorithm, are presented: (E), the relative percentage deviation of the ob-
tained solution f∗ in relation to the putative value (fopt), so E = 100 (f∗ − fopt)/fopt, and
(T ), the CPU time given in seconds.

Table 2 presents the results for the medium size data sets: Breast cancer, TSPLIB1060,
TSPLIB3038 and Pendigit. As registered by Bagirov et al (2013), the HSCM is able to fins solutions
with high accuracy since it locates the putative global solutions, otherwise values near to these
solutions. On other hand, HSCM requires significantly more CPU time than GKM and MGKM
algorithms. Now, the novel proposed version of AHSCM offers an analogous accuracy than HSCM,
but with a expressive gain on the speed. For the instance Pendigit, the CPU time assumes a value
smaller than other algorithms.
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Table 3 presents the results for the large size data sets: D15112, Letters, Shuttle Control
and Pla85900. We can make same comments about the accuracy performance, but now the speed-
up offered by AHSCM assumes high values. So, these results demonstrate that the novel proposed
AHSCM produces solutions to the clustering problems with high precision in short CPU times.
For all instances (D15112, Letters, Shuttle Control and Pla85900) the CPU time assumes a value
smaller than other algorithms. Moreover, as larger is the size of the problem larger is the speed-up
given by the AHSCM algorithm. For instances Shuttle Control and Pla85900, the speed-up can
assume values until 200 times or more yet.

Tables 2 - 3 present the obtained results by the novel proposed version of AHSCM. In the
total of 48 cases (8 instances times 6 different number of clusters), the AHSCM algorithm obtained
10 new putative global solutions, best known solution produced at all times, by using only one
initial starting point.

q fopt GKM MGKM HSCM AHSCM
E T E T E T E T

Breast Cancer
2 1.9323E4 0 0 0 0.02 0 0.05 0.00 0.04
5 1.3705E4 2.28 0.03 1.86 0.05 0 0.61 0.00 0.14
10 1.0190E4 0.26 0.06 0.28 0.11 0 2.14 0.16 0.37
15 8.6921E3 1.02 0.08 1.07 0.16 0 9.08 -0.36 0.62
20 7.6478E3 3.64 0.11 1.80 0.20 0 27.36 -0.19 1.12
25 6.9046E3 5.08 0.14 0.93 0.27 0 44.65 0.11 1.53

TSPLIB1060
2 9.8319E9 0 0 0 0.02 0 0.05 0.31 0.04
5 3.7910E9 0.01 0.03 0.01 0.05 0 0.17 0.54 0.13
10 1.7548E9 0.23 0.06 0.05 0.09 0 0.70 0.42 0.39
15 1.1212E9 0.09 0.09 0.06 0.16 0.02 1.25 1.21 0.87
20 7.9179E8 0.41 0.12 0.41 0.20 0.03 2.70 1.35 1.55
25 6.0670E8 1.80 0.16 1.80 0.25 0.02 4.63 1.81 2.03

TSPLIB3038
2 3.1688E9 0 0.06 0 0.11 0 0.25 0.06 0.11
5 1.1982E9 0 0.25 0 0.39 0 0.98 0.00 0.21
10 5.6025E8 2.78 0.48 0.58 0.81 0 2.64 0.56 0.69
15 3.5604E8 0.07 0.70 1.06 1.20 0 5.16 0.03 1.40
20 2.6681E8 2.00 0.94 0.48 1.61 0.11 8.86 0.22 2.39
25 2.1450E8 0.78 1.20 0.23 1.98 0.01 14.01 0.18 3.84

Pendigit
2 1.2812E8 0.39 2.56 0 5.23 0 5.37 0.00 0.38
5 7.5304E7 0 9.73 0 18.72 0 22.60 0.00 1.76
10 4.9302E7 0 20.45 0 39.31 0 61.71 0.00 4.99
15 3.9067E7 0 30.79 0 59.19 0 120.46 0.00 10.33
20 3.4123E7 0 41.25 0.17 78.37 0.16 250.80 -0.31 19.21
25 3.0038E7 0.24 51.87 0.24 98.47 0 446.37 -0.12 33.06

Table 2. Results for medium size data sets

5. Conclusions
In this paper, computational experiments were performed in order to evaluate the

performance of the AHSCM algorithm for solving 8 traditional instances of the literature.
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q fopt GKM MGKM HSCM AHSCM
E T E T E T E T

D15112
2 3.6840E11 0 2.75 0 4.51 0 5.15 0.00 0.31
5 1.3271E11 0 8.50 0 13.85 0 18.41 0.00 1.36
10 6.4892E10 0.78 14.87 0.78 24.98 0 41.50 -0.62 4.21
15 4.3136E10 0.26 21.00 0.26 35.51 0 68.23 0.15 9.31
20 3.2177E10 0.25 26.99 0.25 45.68 0 101.82 0.62 17.43
25 2.5423E10 0.03 32.71 0.03 55.47 0 139.53 -0.49 30.22

Letters
2 1.3819E6 0 9.63 0 17.35 0 14.40 0.00 0.43
5 1.0771E6 1.94 38.28 0.87 61.78 0 63.10 0.87 2.03
10 8.5750E5 0 79.76 0 131.77 0.21 163.71 0.00 7.61
15 7.4457E5 0.48 116.70 0 200.07 0.40 312.25 -0.08 19.89
20 6.7394E5 0.53 153.21 0.34 265.97 0 509.45 0.30 26.06
25 6.2287E5 1.47 187.79 0.58 331.07 0 749.96 -0.53 53.17

Shuttle control
2 2.1343E9 0 63.20 0 123.82 0 86.74 0.00 0.20
5 7.2448E8 0 251.65 0 521.81 0 351.50 0.00 1.35
10 2.8317E8 0.02 581.28 0 1207.20 0 813.73 0.00 4.87
15 1.5315E8 0 888.24 0 1776.88 0 1272.75 0.00 11.09
20 1.0601E8 0 1195.84 0 2338.99 0 1798.88 -3.60 26.80
25 7.9776E7 0.17 1512.55 0.17 2917.41 0 2396.82 -3.13 51.97

Pla85900
2 3.7491E15 0 89.54 0 115.99 0 123.96 0.00 1.17
5 1.3397E15 0 408.60 0 512.31 0 452.96 0.00 5.04
10 6.8294E14 0 754.67 0 994.29 0 1011.17 0.00 15.66
15 4.6029E14 0.51 1083.04 0.51 1448.94 0 1596.67 0.00 38.01
20 3.5087E14 0.01 1355.85 0 1844.34 0 2210.91 0.00 73.09
25 2.8323E14 0.74 1570.37 0.73 2186.20 0 2863.18 0.13 135.62

Table 3. Results for large size data sets
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In short, this computational experiments show a high level of performance of the algo-
rithm according to the different criteria of consistency, robustness and efficiency. The robustness
and consistency performances can be attributed to the complete differentiability of the approach.
The high speed of the algorithm can be attributed to the partition of the set of observations into two
non overlapping parts, which simplifies drastically the computational tasks.
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