x L\/[SIMPésI0 BRASILEIRO DE PESRUISA OPERACIONAL 16 a 19
Pesquisa Operacional na Gestao da Seguranca PUblica Setembro de 2014

Salvador/BA

COLUMN GENERATION APPROACHES FOR THE SOFTWARE CLUSTERING
PROBLEM

Hugo Harry Kramer, Eduardo Uchoa
Departamento de Engenharia de Producao - Universidade Federal Fluminense
Rua Passo da Patria, 156, Bloco E, 4° andar, Sdo Domingos, 24210-240, Niterdi, RJ
hugoharry@gmail.com, uchoa@producao.uff.br

Marcia Fampa
COPPE, Universidade Federal do Rio de Janeiro
CP 68530, 21945-970, Rio de Janeiro, RJ
fampa@cos.ufrj.br

Viviane Kohler
Universidade Federal de Santa Maria

CTISM, Santa Maria, Rio Grande do Sul, RS
viviane@redes.ufsm.br

Francois Vanderbeck
Institut de Mathématiques de Bordeaux, Université de Bordeaux & Inria Bordeaux Sud-Ouest
351 Cours de la Libération, 33405, Talence Cedex, France
fv@math.u-bordeauxl.fr

ABSTRACT

This work presents the application of branch-and-price approaches to the automatic
version of the Software Clustering Problem. To tackle this problem, we apply the Dantzig-Wolfe
decomposition to a formulation from literature. Given this, we present two Column Generation
(CG) approaches to solve the linear programming relaxation of the resulting reformulation: the
standard CG approach, and a new approach, which we call Staged Column Generation (SCG).
Also, we propose a modification to the pricing subproblem that allows to add multiple columns
at each iteration of the CG. We test our algorithms in a set of 45 instances from the literature.
The proposed approaches were able to improve the literature results solving all these instances to
optimality. Furthermore, the SCG approach presented a considerable performance improvement
regarding computational time, number of iterations and generated columns when compared with
the standard CG as the size of the instances grow.

KEY WORDS. Software Clustering Problem, Column Generation, Branch-and-Price.

Main area: PM - Mathematical Programming

2639

7!
x L\/[SIMPésI0 BRASILEIRO DE PESRUISA OPERACIONAL 16 a 19
Pesquisa Operacional na Gestao da Seguranca PUblica Setembro de 2014

Salvador/BA

1. Introduction

In this work we deal with the Software Clustering Problem (SCP), a problem that arises
in the context of Software Engineering. Many software systems have to be modified to cope
with some demands as, for instance, performance improvement, addition of new capabilities, bug
fixing, extension to new platforms, among others. In order to implement these modifications
when the system is too big, it is practical to partition it into subsystems which will be distributed
to development teams. One issue resulting from such distribution comes from the fact that a
modification done by a team can impact the work of other teams. Therefore, it is important to
look into ways on how to obtain a partition where the subsystems are highly intra-connected and
loosely inter-connected, which in turn will make the system easier to understand, to maintain and
to modify.

The problem of determining such subsystems can be seen as a clustering problem, or a
graph partitioning problem, which is NP-Hard (Garey and Johnson, 1979). To do so, we rely on
the assumption that a source code can be transformed into a language-independent directed graph
(Mitchell, 2002), and such graph is called a Modular Dependency Graph (MDG). The objective
is to partition the MDG in clusters, where each cluster represents a subsystem, and the quality of
the partition must be maximized. The quality of a partition is defined by a Modularization Quality
(MQ), which measures the trade-off between inter and intra-connectivity. The definitions of inter
and intra-connectivity, MDG, and MQ will be given in Section 2.

Although software clustering has been used for some years before, its goals were first
discussed by Gauthier and Pont (1970), and the suggestion of criteria to achieve them were
formalized by Parnas (1972).

When software clustering is considered as an optimization problem, most of the works are
based on heuristic search algorithms. In Mancoridis et al. (1998), the authors dealt with the software
clustering as an optimization problem for the first time and present the Bunch clustering tool, which
contains an exhaustive enumeration procedure, a Hill Climbing algorithm and a Genetic Algorithm
(GA). This work is continued by Doval et al. (1999) where the authors address the problem by
means of a GA, and by Mancoridis et al. (1999) where new features are added to Bunch. These
three papers consider a MDG as input and a MQ that measures the trade-off between intra and
interconnectivity. A new MQ measure is introduced in Mitchell and Mancoridis (2002), where it
is defined as the sum of the Cluster Factors (CF) of the clusters in the partition of MDG. These
works are summarized in the PhD thesis of Mitchell (2002). His GA is improved in the DAGC
algorithm presented by Parsa and Bushehrian (2005). An algorithm based on learning automata and
another one that combines learning automata with a genetic algorithm are proposed by Mamaghani
and Meybodi (2009). These algorithms are compared with DAGC and Bunch’s Hill Climbing
algorithm, and the authors claim to achieve faster convergence to good solutions and more success
on avoiding local optimal solutions. In Mahdavi et al. (2003b) and Mahdavi et al. (2003a) a parallel
Hill Climbing algorithm is proposed. A survey on search based algorithms for the problem can be
found in Réihi (2010), where the author lists other approaches in which the input is not a MDG and
other MQs are used. As far as we know, there are only two works dealing with the SCP with exact
algorithms. The first one is the exhaustive enumeration procedure present in Bunch. The other one
by Kohler et al. (2013), presents some mathematical formulations for the problem, as well as a
preprocessing procedure and valid inequalities.

The remainder of the paper is outlined as follows: in Section 2, the formal definitions
of MDG, the used MQ and the SCP are given. Section 3 presents the compact mathematical
formulation for the problem found in Kohler et al. (2013), and a reformulation obtained by means
of Dantzig-Wolfe decomposition (Dantzig and Wolfe, 1960). The CG approaches to solve this
reformulation are detailed in Section 4. The computational experiments performed to evaluate the
proposed approaches in comparison with those from the literature are described and discussed in
Section 5. Lastly, Section 6 presents the conclusions of the work.

2640

x L\/[SIMPésI0 BRASILEIRO DE PESRUISA OPERACIONAL 16 a 19
Pesquisa Operacional na Gestao da Seguranca PUblica Setembro de 2014

Salvador/BA

2. Problem definition

In this problem, one has a directed MDG G(V, E) consisting of a set V' = {1,...,n} of
nodes representing the modules of a software and a set E C {(u,v)|u,v € V} representing the
relationships between modules. Each relationship (u,v) € F has an associated positive weight
given by ¢y, . The goal is to find a partition of V' into non-empty clusters V1, ..., Vi such that

K
Uw=v. WwnVi=0 (ki=1,.. Kk#l). (1)
k=1

When the number of clusters K is already given as part of the input, the clustering is called
non-automatic. Otherwise, when the best value of K must be discovered by the method, the
clustering is called automatic. The SCP consists in finding a partition with maximal quality. Firstly,
before defining the quality measures of a partition, the definitions of intra and inter-connectivity
must be given. The intra-connectivity of a cluster measures how such cluster is cohese or dense,
i.e., how much the components of the cluster are connected. The intra-connectivity Ay, of cluster k
is given by:

M
Ay = 2
LA 2)
where 41 is the number of edges with both ends inside cluster k, and |Vi|? is the maximum
possible number of edges inside cluster k, including loop edges. The inter-connectivity between two
different clusters measures how they are connected, i.e., how much the modules of these clusters
are related. The inter-connectivity Ej, ; between two clusters £ and [is defined as follows:

{ 0, itk =1
B, = €kl . 3)
v —— ifk#I,
2[Vil[Vil
where ¢}, ; is the number of arcs with an end in cluster & and the other end in cluster [, and 2|V} || V|
is the maximum possible number of arcs between those clusters.

Given these definitions, a first partition quality measure, called BasicMQ (Mancoridis
et al., 1998), is defined as the difference between the average intra-connectivity and the average
inter-connectivity, given by the following expression:

1 K 1
» - Ak - — EkJ, ifK >1
BasicM Q) = K k2:31 1P| (k,lX):eP “)
Ay, if K =1,

where K is the number of clusters in the partition and P is the set of pairs of clusters {(k,)|k, =
1,..., K,k # l} in the partition. The problem with BasicMQ is that it can not be used to measure
the quality of partitions obtained from graphs with weighted arcs. To overcome this drawback,
Mitchell (2002) proposed a new MQ, called TurboMQ, which is defined as follows.

K
TurboMQ =) ~ C'Fy. (5)
k=1
According to the expression above, the quality of a partition is given by the sum of the

cluster factors of the clusters that composes the partition. The cluster factor C'F}, of a cluster £ is
defined by:

2641

' x L\/[SIMPésIo BRASILEIRO DE PESRQUISA OPERACIONAL
Pesquisa Operacional na Gestao da Seguranca PUblica

0, if cluster k is empty

CFy = 'uikl, otherwise, ()

HEk + 5€k

where pi is the sum of weights of arcs with both ends inside cluster k, and ¢, is the sum of weights

of the arcs with exactly one end in cluster k. In the present work, as well as in Kohler et al. (2013),
TurboMQ is considered as the partition quality measure to be maximized.

3. Mathematical formulations

The SCP can be formulated as a Mixed Integer Linear Programming (MILP) problem.
The first application of mathematical models to the problem can be found in Kéhler ef al. (2013). In
such work, authors present three formulations, where two of them are MILPs which derive from the
application of linearization procedures over the other formulation, where the objective function is a
Sum of Linear Fractional Functions (SOLF), which is non-linear and non-convex. The formulation
presented in the following is the one obtained by means of the linearization procedure proposed by
Billionet and Djebali (2006).

Let K/ = {1,..., Kpas} be the set of possible clusters, K4, should be set as an upper
bound on the maximum number of clusters in the optimal partition. Binary variables ¥ indicate
if a node u € V is assigned to a cluster ¥ € K’ or not. Binary variables ¢¥, indicate whether
an edge (u,v) € F is completely inside a cluster k& € K'. Continuous variables ry represent the
Cluster Factor of cluster k& € K’. Such variables, along with continuous variables s* result from

the linearization procedure, where s¥ = r¥2% and

0, if cluster £ is empty,

Tt o= 2 Z(u,v)GE cUUtﬁv (7

otherwise.
Z(u,v)eE Cuv(.%'ﬁ + .%',l]f) ’

Therefore, the problem can be modeled as the following mathematical formulation 7.

(F1) max Z Tk)
keK'
subject to
Y ap=()1 VueV)
kEK'

th <zt Y(u,v)e E ke K (10)
th <af V(u,v)e E ke K (11)
th >ak 12k 1 Yuw)eEkeK (12)
rF <> a2l Vke K (13)

ueV
sf<rb YueVkeK (14)
sk < ok Vu eV, ke K’ (15)
sk>rbpak 1 vueVikeK (16)

16 a 19

Setembro de 2014

Salvador/BA

2642

x L\/[SIMPésI0 BRASILEIRO DE PESRUISA OPERACIONAL 16 a 19
Pesquisa Operacional na Gestao da Seguranca PUblica Setembro de 2014

Salvador/BA

Y cwl(sh+sh)y=2 Y cwth, VEeK (17)
(u,w)ER (u,v)EE

0<rf<1 VkekK (18)

0<s*<1 VueVkekK’ (19)

0<th <1 Vv eEkeK' (20)

w* € {0,1} VueVkeK' 1)

The objective function (8) aims at maximizing the quality of the partition. Constraints
(9) assure that each node is assigned to only one cluster. Constraints (10)—(12) guarantee that an
edge is inside cluster £ only if both nodes linked by it are inside the same cluster. Constraints (13)
and (17) define r*, while constraints (14)—(16) define the relationship between variables * and xfj
given by sﬁ variables. Constraints (18)—(21) define the variables domains.

This formulation suffers from symmetry issues and provides a weak linear programming
relaxation dual bound, which is equal to the number of nodes of the instance, resulting in a bad
performance when one tries to solve it by means of a MILP solver. Aiming at the improvement
of this dual bound and the symmetry elimination, the authors proposed some cuts and valid
inequalities.

3.1. Dantzig-Wolfe Decomposition

Let Q be the set of all feasible clusters, where a cluster ¢ € @ consists of a subset of
nodes in V. A binary variable A, is used to decide if a cluster ¢ € () is part of the solution. The
constant a,, takes value 1 if node v € V' is in cluster ¢ € () and 0 otherwise. The cluster factor C,
of cluster ¢ is as the definition given in Section 2. The following reformulation aims at selecting a
set of feasible clusters which maximizes the sum of cluster factors.

(DWM) max > Cyh, (22)
qeQ
subject to
Y anghg=()1 WweV (23)
q€Q
)\q € {07 1} Vq € Q (24)

The columns in this formulation are associated to the set of all feasible clusters. As the
size of instances grow, the number of columns in this model becomes too large, and it cannot be
solved directly as it relies on the enumeration of all feasible clusters. To overcome this issue,
we propose to solve it by branch-and-price, where the Linear Programming relaxation of DYWWM is
solved by CG at each node of the branch-and-bound tree. In the CG algorithm, a restricted version of
DWM with a few columns is initially considered and new columns are added by solving a pricing
subproblem until the addition of new columns are no more necessary. The pricing subproblem will
be presented in the next subsection, while the proposed CG algorithms will be detailed in Section
4.

3.2. Pricing Subproblem
Let m,,v € V be the dual variables associated to constraints (23). Given the values of
these dual variables, the pricing subproblem SP is:

(SP)maxr— > myay (25)

ueV

2643

x L\/ [SIMPésI0 BRASILEIRO DE PESRUISA OPERACIONAL
Pesquisa Operacional na Gestao da Seguranca PUblica

subject to

tuw < Ty V(u,v) € E (26)
tuo < Ty V(u,v) € E 27
tuw > Ty + 1y — 1 V(u,v) € E (28)
r < Zazu (29)

=
Sy S 1 YueV 30)
Su < Ty YueV 3D
T+ Xy, — Sy <1 YueV (32)
Y cwlsuts)= > 2cuwtu (33)

(u,v)eE (u,v)EE

tur € {0,1} Y(u,v) € E (34)
x, €4{0,1} YueV (35)
0<s,<1 Yu eV (36)
0<r<l1. 37)

The solution of SP is a cluster whose cluster factor is r. It represents a feasible column
to DWM with reduced cost given by the objective function (25). Constraints (26)—(37) have the
same meaning as in J.

Furthermore, this pricing subproblem can be modified in order to make the CG algorithm
capable of adding multiple columns per iteration. This is done by the addition of two constraints.
The first one fixes one node w € V to the solution, and the second one forbids the nodes v € V,
such that v < w, to appear in such solution. Then, when pricing at each iteration of the CG, a
pricing subproblem is solved for each fixed node w. Thus, to diversify the search in the column
generation process, this pricing subproblem takes the following form:

(SPw) maxr — Y wuty (38)
ueV
subject to
Ty =1 (39)
T, =0 YoeV, v<w 40)
(25) — (37)

4. Column Generation Approaches

This section describes the proposed CG approaches to deal with SCP. Due to the
prohibitive use of formulation DWM within a MILP solver when instances grow, the CG
algorithms are used to solve its linear programming relaxation within a branch-and-price procedure.

4.1. Standard Column Generation

The Standard Column Generation algorithm proposed for the SCP is detailed in the Alg.
1 that follows. Alg. 1(a) is the Standard CG algorithm where only one column can be added at
each iteration. It begins with the initialization of the Restricted Master Problem (RMP) with a
subset of the columns of the linear programming relaxation of DWM (with artificial columns). At
each iteration, the RMP is solved and the dual variables 7, of constraints (23) are obtained. The
pricing subproblem SP is then fed with these dual variables and solved to optimality by a MILP
solver. The solution of SP represents a cluster, which is a column of DWM with reduced cost

16 a 19

Setembro de 2014
Salvador/BA

2644

Pesquisa Operacional na Gestao da Seguranca PUblica

given by objective function (25). If the reduced cost is positive, this column will be added to RMP
and the algorithm proceeds to the next iteration. At a given iteration, if the solution of the pricing
subproblem provides a column with non-positive reduced cost, it means that this column will not
be added to RMP. Furthermore, it means that the addition of columns to RMP is no more necessary
and the optimal solution for the linear programming relaxation of DWM was found. Then, the
algorithm stops returning such solution.

1: procedure SINGLECOLSTANDARDCG(RMP) 1: procedure MULTICOLSSTANDARDCG(RMP)
2: sol < () 2: sol + 0
3: solsgp < 0 3: solsp,, + 0
4: Initialize RMP 4: Initialize RMP
5: col Added < true 5: col Added < true
6: while col Added do 6: while col Added do
7: sol < LPsolver(RMP) 7: sol <+ LPsolver(RMP)
8: col Added < false 8: col Added < false
9: Update SP with dual solution values 7 9: Update SP with dual solution values 7
10: solsp + MILPsolver(SP(7)) 10: for each node w € V do
11: if f(solsp) > 0 then 11: solsp,, + MILPsolver(SP.,(m))
12: Add column associated with solsp to RMP 12: if f(solsp,,) > 0 then
13: col Added < true 13: Add column associated with solsp,, to RMP
14: end if 14: col Added < true
15: end while 15: end if
16: return sol 16: end for
17: end procedure 17: end while
18: return sol

19: end procedure

(a) Standard CG adding one column per iteration (b) Standard CG adding multiple columns per iteration

Alg. 1: Standard Column Generation algorithms

In Alg. 1(b), the version of the Standard CG algorithm where multiple columns can be
added to RMP at each iteration is presented. The only difference consists in the pricing, where a
subproblem SP,, is solved for each node w € V. Thus, at each iteration of this algorithm, at most
n columns can be added to RMP.

4.2. Staged Column Generation

It can be noticed that the Standard CG algorithm proposed for the problem in the previous
subsection has its performance highly dependent on the performance of the MILP solver used in the
pricing. Therefore, in order to alleviate the computational burden of the Standard CG, a new CG
approach is proposed, and is outlined in the following Alg. 2.

As well as the Standard CG algorithms, two versions of the Staged CG algorithm are
proposed. The first one adds only one column per iteration and is detailed in Alg. 2(a). It
begins with stage s equal to 1, and an enumeration procedure provides a list with all connected
clusters containing up to maxStages — 1 nodes. At the next step, the RMP is initialized as defined
previously in Alg. 1. At each iteration, while s < maxStages (which we call heuristic phase), a
solution is obtained for the subproblem by searching for a cluster having at most s nodes with the
best reduced cost from the list of clusters. If the reduced cost of this column is positive, it will be
added to RMP and the algorithm goes to the next iteration. Otherwise, the column is not added and
the stage s is incremented. When the stage s of the algorithm reaches maxStages, the heuristic
phase is finished and the remaining pricing subproblems are solved to optimality by a MILP solver.
Therefore, the iterations are performed in the same way as in the Standard CG until convergence,
returning the optimal solution of the linear programming relaxation of DWM.

/ x L\/[SIMPOSI0 BRASILEIRO DE PESRQUISA OPERACIONAL 16 a 19

Setembro de 2014

Salvador/BA

2645

: x L\/[SIMPOSI0 BRASILEIRO DE PESRQUISA OPERACIONAL 16 a 19

Pesquisa Operacional na Gestao da Seguranca PUblica Setembro de 2014
Salvador/BA

1: procedure SINGLECOLSTAGEDCG(RMP, maxStages) 1: procedure MULTICOLSSTAGEDCG(RMP, mazxStages)
2: s+ 1 2: s+ 1
3: sol + 3: sol +
4: solsp < 1] 4. solsp 1]
5: cluster List +—EnumProcedure(MDG, mazStages — 1) 5: cluster List <—EnumProcedure(MDG, maxStages — 1)
6: Initialize RMP 6: Initialize RMP
7: colsAdded < true 7: colsAdded < true
8: while colsAdded do 8: while cols Added do
9: sol < LPSolver (RMP) 9: sol < LPSolver (RMP)
10: colsAdded < false 10: colsAdded < false
11: Update SP with values of m 11: Update SP with values of 7
12: while s < mazStages do 12: while s < maxzStages do
13: solsp + FindBestCluster(cluster List, s) 13: for each node w € V do
14: if f(solsp) > 0 then 14: solsp,, < FindBestCluster (clusterList, s)
15: Add column associated with solsp to RMP ~ 15: if f(solsp,,) > O then
16: colsAdded < true 16: Add column associated with solsp, to
17: else RMP
18: s+ s+1 17: colsAdded <+ true
19: end if 18: end if
20: end while 19: end for
21: solsp < MILPSolver (SP(7)) 20: if Icols Added then
22: if f(solsp) > 0 then 21: s s+1
23: Add column associated with solsp to RMP 22: end if
24: colsAdded <+ true 23: end while
25: end if 24: for each node w € V do
26: end while 25: solsp,, < MILPSolver (SPy (7))
27: return sol 26: if f(solsp,,) > 0 then
28: end procedure 27: Add column associated with solsp,, to RMP
28: colsAdded + true
29: end if
30: end for
31: end while
32: return sol

33: end procedure

(a) Staged CG adding one column per iteration (b) Staged CG adding multiple columns per iteration

Alg. 2: Staged Column Generation algorithms

The version of the algorithm that allows the addition of multiple columns per iteration
detailed in Alg. 2(b) differs only in the pricing from Alg. 2(a). Now, in the heuristic phase, the
cluster with best reduced cost found from the list also must satisfy constraints (39) and (40). In the
last stage, the pricing is performed in the same way as in Alg. 1(b).

4.3. Branching
The branching scheme in the branch-and-price algorithm is as follows: after solving each

node of the branch-and-bound tree using one of the CG algorithms presented, two child nodes are
created. At each of these new nodes, disjunctive branching constraints are added to RMP in the
form presented by Vanderbeck (2011), which generalizes the Ryan and Foster (1981) scheme. For
the SCP, these disjunctive constraints are:

DA <0 or) oA >, (41)

q€0 q€Q

where Q is a subset of columns of RMP in which, for two nodes u,v € V, in which a,; = 1
and a,y = 1. Thus, by adding the disjunctive constraint in the left, A\, variables with ¢ € Q are
forbidden in the solution of RMP, i.e., in such solution, nodes » and v can not belong to the same
cluster. By adding the constraint in the right, at least one), variable with ¢ € Q must be in the
solution of RMP, which means that in this solution, nodes © and v must be in the same cluster.

After the root node, when using one of algorithms in Alg. 2, the stage parameter s is not
reset to 1. This is equivalent to say that, after the root node, each node in the branch-and-bound tree
is solved by one of algorithms in Alg. 1, and the pricing subproblems solutions are obtained by a
MILP solver.

2646

x L\/[SIMPésI0 BRASILEIRO DE PESRUISA OPERACIONAL 16 a 19
Pesquisa Operacional na Gestao da Seguranca PUblica Setembro de 2014

Salvador/BA

5. Computational experiments

In order to perform the computational experiments, we consider a set of 45 instances
from the literature, where 15 of these instances were proposed by Mitchell (2002). In these
instances, there are no weighted edges in the MDGs. The remaining 30 instances were proposed
by Mamaghani and Meybodi (2009) with all MDGs originally containing weighted edges.
Furthermore, for all the instances, we consider the reduced MDGs resulting from the application
of the preprocessing technique proposed by Kohler ef al. (2013). The preprocessed instances were
provided by the authors of the latter work.

The CG approaches proposed in the previous sections were implemented in C++, using
the BaPCod framework!, and Boost C++ libraries 1.49.0.1. The LP and MILP solver used was
the IBM ILOG CPLEX 12.1 64 bits. All executions were performed in a PC Intel Core i5-3210M
2.5 GHz with 6 GB RAM, running under Ubuntu 13.04 64 bits linux OS, kernel 3.8.0-30-generic
(x86_64). Only 1 CPU thread was used, a time limit of 600 seconds is imposed to the MILPs, the
number of iterations in the CG algorithms is limited to 5000, and the maximum number of stages
considered in SCG is 7. Such maximum number of stages was choosen by observing that if one
wants to enumerate all connected clusters with more than 6 nodes, the time needed would impact
negatively in the overall performance of the SCG algorithms.

We divided the instances in three different groups according to the number of nodes, after
preprocessing. The Small Instances group contains 15 instances with at most 15 nodes. The 17
Medium Instances have MDGs from 16 to 35 nodes. Lastly, the Larger Instances group has 13
instances ranging from 36 to 55 nodes. Table 3 shows the comparison of our approaches with the
literature in terms of average results. In this table, the second and third columns show the literature
results for the exhaustive procedure of the Bunch tool (Mitchell, 2002) and the best MILP approach
of Kohler et al. (2013), as shown in the latter work. The last four columns show the results found by
our approaches, where the fourth and fifth columns contain the results of the Standard CG adding a
single column and multiple columns per iteration, respectivelly, and the same results are shown for
the Staged CG approach in the sixth and seventh columns.

Comparing the proposed approaches with the literature, one can notice that the results are
notably improved in terms of computational time and number of instances solved. Our approaches
were able to solve all 45 instances, where 43 of them were solved to optimality at the root node,
an improvement of 11 instances when compared with the best results of Kohler et al. (2013).
Regarding the average computational time, even the straightforward Standard CG adding one
column per iteration was able to outperform the literature approaches in the three instance groups.

Observing the results for the CG approaches, it is observed that, for this problem,
the pricing in two phases (Staged CG) results in a reasonable improvement in the number of
iterations, generated columns and computational time when compared to the Standard CG. Also,
the modification made to allow the addition of multiple columns per iteration contributes to obtain
better results, specially concerning the number of iterations. In this aspect, the best average
results for the three instance groups were found by the Standard CG approach adding multiple
columns per iteration. When comparing the average number of generated columns and the average
computational time, the best results were obtained by the Staged CG approach adding a single
column per iteration.

"More info at https://realopt .bordeaux.inria.fr/?page_id=2.

2647

7/
/ x L\/[SIMPOSI0 BRASILEIRO DE PESRQUISA OPERACIONAL

Pesquisa Operacional na Gestao da Seguranca PUblica

Table 3: Average results

Literature This work
Exhaustive MILP Std. CG Stg. CG
(Mitchell, 2002) (Kohler et al, 2013) SingleCol MultiCols SingleCol MultiCols

Small Instances

Avg. iters - - 28 10 23 14
Avg. columns - - 27 35 18 23
Avg. time (s) 5732.33 0.60 1.38 0.63 0.05 0.08
Inst. solved 8 15 15 15 15 15
Medium Instances

Avg. iters - - 134 24 75 38
Avg. columns - - 133 154 67 99
Avg. time (s) 11000.00 761.92 73.48 10.98 3.09 4.49
Inst. solved 0 16 17 17 17 17
Larger Instances

Avg. iters - - 486 31 128 44
Avg. columns - - 485 406 121 179
Avg. time (s) 11000.00 5649.35 1673.44 75.06 52.27 95.31
Inst. solved 0 3 13 13 13 13

L: Intel Xeon 2.67 GHz, 24 GB RAM, Suse Linux, CPLEX 12.2, 11000 s of time limit

For the two instances that were not solved at the root node, the branch-and-price algorithm
needed only one branch to solve the instance ciald and two branches to solve the instance star. The
gap between the root node relaxation and the optimal solution of instance ciald was 0.06%, and
0.23% for instance star.

6. Conclusions

In this work, a new formulation was obtained for the SCP by means of the Dantzig-Wolfe
decomposition which is solved by a branch-and-price method. To solve the linear programming
relaxation of this formulation at each node of the branch-and-bound tree, two CG approaches are
proposed, a Standard one and a Staged approach. As it can be observed from the computational
experiments, the proposed approaches were able to notably improve the literature results, by solving
all 45 test instances available.

Also, a reasonable improvement is achieved when comparing the Standard and Staged
CG algorithms in terms of average iterations, number of columns generated and computation time.
The improvement on the number of iterations and generated columns can be credited to the fact
that, in the beginning of a CG algorithm, the information given by the dual variables is somewhat
irrelevant. Thus, in the Standard CG these dual variables misleads the pricing subproblem to find
columns which are very unlikely to be present in the final solution. In general, the columns that will
be present in the final solution are added at the last iterations, when the dual variables are stabilized
and their information is more relevant for the pricing of new columns. Also, the size of the clusters
found in the heuristic phase are very similar to those that will be in the final solution. In addition,
at the end of the heuristic phase, the dual variables are reasonably stable and then provide a good
information so the columns priced out by the MILP solver in the last stage are more suitable to
appear in the final solution.

The Stage CG approach seems to have potential to provide the same improvements in
other problems, specially when an efficient oracle is not available to exactly solve the pricing
subproblems. Also, the heuristic phase can be seen as a stabilization phase, and the computationally

16 a 19

Setembro de 2014
Salvador/BA

2648

7!
x L\/[SIMPésI0 BRASILEIRO DE PESRUISA OPERACIONAL 16 a 19
Pesquisa Operacional na Gestao da Seguranca PUblica Setembro de 2014

Salvador/BA

expensive exact pricing subproblem will be used only when the dual variables give good information
on how the columns should look.

References
Billionet, A. and Djebali, K. (2006), Résolution d’un probléme combinatoire fractionnaire par la
programmation linéaire mixte. RAIRO. Recherche opérationnelle, v. 40, n. 2, p. 97-111.

Dantzig, G. B. and Wolfe, P. (1960), Decomposition principle for linear programs. Operations
research, v. 8, n. 1, p. 101-111.

Doval, D., Mancoridis, S. and Mitchell, B. S. Automatic clustering of software systems using a
genetic algorithm. Proceedings of the Software Technology and Engineering Practice, p. 73-81.
IEEE, 1999.

Garey, M. R. and Johnson, D. S. Computers and intractability: a guide to the theory of
NP-completeness. Freeman, 1979.

Gauthier, R. and Pont, S. Designing Systems Programs. Prentice-Hall, 1970.

Kohler, V., Fampa, M. and Aradjo, O. (2013), Mixed-integer linear programming formulations
for the software clustering problem. Computational Optimization and Applications, v. 55, n. 1,
p. 1-23.

Mahdavi, K., Harman, M. and Hierons, R. (2003a), Finding building blocks for software
clustering. Lecture Notes in Computer Science, v. 2724, p. 2513-2514.

Mahdavi, K., Harman, M. and Hierons, R. M. A multiple hill climbing approach to software
module clustering. Proceedings of the International Conference on Software Maintenance, p.
315-324. 1IEEE, 2003b.

Mamaghani, A. S. and Meybodi, M. R. Clustering of software systems using new hybrid
algorithms. Proceedings of the 2009 IEEE International Conference on Computer and
Information Technology (CIT’09), volume 1, p. 20-25, 2009.

Mancoridis, S., Mitchell, B. S., Rorres, C., Chen, Y. and Gansner, E. R. Using automatic
clustering to produce high-level system organizations of source code. Program Comprehension,
1998. IWPC’98. Proceedings., 6th International Workshop on, p. 45-52. IEEE, 1998.

Mancoridis, S., Mitchell, B. S., Chen, Y. and Gansner, E. R. Bunch: A clustering tool for the
recovery and maintenance of software system structures. Proceedings of the IEEE International
Conference on Software Maintenance, p. 50-59. IEEE, 1999.

Mitchell, B. S. A heuristic search approach to solving the software clustering problem. PhD thesis,
Drexel University, 2002.

Mitchell, B. S. and Mancoridis, S. Using heuristic search techniques to extract design abstractions
from source code. Proceedings of the Genetic and Evolutionary Computation Conference, p.
1375-1382. Morgan Kaufmann Publishers Inc., 2002.

Parnas, D. L. (1972), On the criteria to be used in decomposing systems into modules.
Communications of the ACM, v. 15, n. 12, p. 1053-1058.

Parsa, S. and Bushehrian, O. (2005), A new encoding scheme and a framework to investigate
genetic clustering algorithms. Journal of Research & Practice in Information Technology, v. 37,
n. 1.

2649

’ X L\/[SIMPésI0 BRASILEIRO DE PESRUISA OPERACIONAL 16 a 19
Pesquisa Operacional na Gestao da Seguranca Publica Setembro de 2014

Salvador/BA

Réiha, O. (2010), A survey on search-based software design. Computer Science Review, v. 4, n. 4,
p. 203-249.

Ryan, D. M. and Foster, B. A. (1981), An integer programming approach to scheduling. Computer
scheduling of public transport urban passenger vehicle and crew scheduling, p. 269-280.

Vanderbeck, F. (2011), Branching in branch-and-price: a generic scheme. Mathematical
Programming, v. 130, n. 2, p. 249-294.

2650

