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ABSTRACT
In this work we propose an outcome space approach for globally solving generalized

convex multiplicative problems, a special class of nonconvex problems which involves the mini-
mization of a finite sum of products of convex functions over a nonempty compact convex set. The
product of any two or more convex positive functions is not necessarily convex or quasiconvex, and,
therefore, the problem may have local optimal solutions that are not global optimal solutions. In the
outcome space, this problem can be solved efficiently by an algorithm which combines a relaxation
technique with the procedure branch–and–bound. Some computational experiences are reported.
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RESUMO
Neste trabalho propomos uma abordagem no espaço dos objetivos para resolver global-

mente problemas multiplicativos generalizados convexos, uma classe especial de problemas não–
convexos que envolve a minimização de uma soma finita de produto de funções convexas sobre
um conjunto convexo, compacto e não vazio. O produto de duas ou mais funções convexas posi-
tivas necessariamente não é convexa ou quasi–convexa, e, portanto, o problema pode ter soluções
ótimas locais que não são soluções ótimas globais. No espaço dos objetivos, este problema pode
ser eficientemente resolvido por um algoritmo que combina relaxação com uma técnica de branch–
and–bound. Algumas experiências computacionais são relatadas.

PALAVRAS CHAVE. Otimização Global, Programação Multiplicativa, Análise Convexa.

Área Principal: Programação Matemática
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1. Introduction

Many practical problems in Engineering, Economics and Planning are modeled in a con-
venient way by Global Optimization problems. The principal objective of this paper is to introduce
a new global optimization technique for globally solving a special class of generalized convex mul-
tiplicative problems. Convex analysis results allow to reformulate the problem as a semi–infinite
problem in an outcome space; a branch and bound algorithm is proposed for solving such problem.

This paper is concerned with the generalized convex multiplicative problem, which con-
sists in minimizing an arbitrary finite sum of products of convex functions over a nonempty compact
convex set. The generalized multiplicative programming problem is known as a difficult optimiza-
tion. Problems of the following forms are considered:

min
x∈Ω

f0(x) +
p∑
i=1

ri∏
j=1

fij(x), (1.1)

where f0 and fij are convex functions defined on Rn. It is also assumed that Ω ⊂ Rn is a nonempty
compact convex set and that f0 and fij are positive functions over Ω for i = 1, 2, ..., p, j =
1, 2, ..., ri. The product of any two or more convex positive functions is not necessarily convex
or quasi–convex, and, therefore, problem (1.1) may have local optimal solutions that are not global
optimal solutions. In nonconvex global optimization, problem (1.1) has been referred as the gener-
alized convex multiplicative problem. In this paper an approach for globally solving the generalized
multiplicative problems 1.1) is proposed and tested.

The conditions f0 ≡ 0 and p = 1 characterize the classical convex multiplicative prob-
lem. Microeconomics and geometric design are some of the areas where this convex multiplicative
programming finds interesting applications. A number of multiplicative programming approaches
for solving this problem in the outcome space have been proposed. More recently, a number of
branch–and–bound techniques have also been proposed (see Thoai 1991, Kuno 2001 e Oliveira e
Ferreira 2008).

The condition ri = 2 for i = 1, 2, ..., p characterizes the classical generalized convex
multiplicative problem. Important problems in engineering, financial optimization and economics,
among others, rely on mathematical optimization problems of the form (1.1). In (Konno et al.,
1994) the problem is projected in the outcome space, where the problem has only m variables, and
then solved by an outer approximation algorithm. In (Oliveira and Ferreira, 2010) the problem is
projected in the outcome space following the ideas introduced in (Oliveira and Ferreira, 2008), re-
formulated as an indefinite quadratic problem with infinitely many linear inequality constraints, and
then solved by an efficient relaxation–constraint enumeration algorithm. In (Ashtiani and Ferreira,
2011) the authors address the closely related problem of maximizing the same objective function,
but with f0 and fij concave, rather than convex positive functions over Ω. In fact, generalized con-
vex and generalized concave multiplicative problems are found in the fields of quadratic, bilinear
and linear zero–one optimization.

In the last decade, many efficient solution algorithms have been proposed for globally
solving several particular cases of problem (1.1), especially when ri = 2 or f0 and fij are linear
(Konno et al. 1994). Problems in which p > 1 and ri > 2 have been also addressed, but generally
assuming that f0 and fij are linear functions (Ryoo and Sahinidis, 2003).

In this paper, a global optimization algorithms based on a suitable reformulation of the
problem in the outcome space is proposed. Global minimizers are obtained as the limit of the
optimal solutions of a sequence of special programs solved by using a rectangular branch–and–
bound procedure.

The paper is organized in five sections, as follows. In Section 2, the problem is refor-
mulated in the outcome space and an outer approximation approach for solving generalized multi-
plicative problems is outlined. In Sections 3 the relaxation branch–and–bound algorithm is derived.
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Some computational experiences with the method described in Section 3 are reported in Section 4.
Conclusions are presented in Section 5.

Notation. The set of all n-dimensional real vectors is represented as Rn. The sets of all nonnegative
and positive real vectors are denoted as Rn

+ and Rn
++, respectively. Inequalities are meant to be

componentwise: given x, y ∈ Rn
+, then x ≥ y (x − y ∈ Rn) implies xi ≥ yi, i = 1, 2, ..., n.

Accordingly, x > y (x − y ∈ Rn
++) implies xi > yi, i = 1, 2, ..., n. The standard inner product in

Rn is denoted as 〈x, y〉. If f : Rn → Rm is defined on Ω, then f(Ω) := {f(x) : x ∈ Ω}. The
symbol := means equal by definition.

2. The Outcome Space Approach

The outcome space approach for solving problem (1.1) is inspired in a similar approach
recently introduced in (Oliveira and Ferreira, 2010) and (Ashtiani and Ferreira, 2011) for solving
the classical generalized multiplicative problems (ri = 2 for i = 1, 2, ..., p). The objective function
in (1.1) can be written as the composition u(f(x)), where u : Rm → R, m = pri + 1, is defined by

u(y) := y0 +
p∑
i=1

ri∏
j=1

yij .

The function u can be viewed as a particular aggregating function for the problem of
minimizing the vector-valued objective f := (f0, f11, ..., f1r1 , ..., fp1, ..., fprp) over Ω (Yu, 1985).
The image of Ω under f ,

Y := f(Ω), (2.1)

is the outcome space associated with problem (1.1). Since f is positive over Ω, it follows that u
is strictly increasing over Y and any optimal solution of (1.1) is Pareto–optimal or efficient (Yu,
1985). It is known from the multiobjective programming literature that if x ∈ Ω is an efficient
solution of (1.1), then there exists w ∈ Rm

+ such that x is also an optimal solution of the convex
programming problem

min
x∈Ω
〈w, f(x)〉. (2.2)

Conversely, if x(w) is any optimal solution of (2.2), then x(w) is efficient for (1.1) if
w ∈ Rm

++. By defining

W :=
{
w ∈ Rm

+ :
m∑
i=1

wi = 1
}
,

the efficient set of (1.1), denoted as effi(Ω), can be completely generated by solving (2.2) overW .
The outcome space formulation of problem (1.1) is simply

min
y∈Y

u(y) := y0 +
p∑
i=1

ri∏
j=1

yij . (2.3)

The solution approaches which aim at solving problem (1.1) by solving its equivalent
problem (2.3) in the outcome space basically differ in the way of representing the (generally) non-
convex set Y . The main theoretical result in this paper consists in showing that problem (2.3) admits
an equivalent formulation with a convex feasible region. In (Oliveira and Ferreira, 2010) a suitable
representation is derived with basis on the following convex analysis result. See (Lasdon, 1970) for
a proof.
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Lemma 2.1 Given y ∈ Rm, the inequality f(x) ≤ y has a solution x ∈ Ω if and only if y satisfies

min
x∈Ω
〈w, f(x)− y〉 ≤ 0 for all w ∈ W.

or, equivalently,
max
x∈Ω
〈w, f(x)− y〉 ≥ 0 for all w ∈ W. (2.4)

The main theoretical result of this paper consists in showing that problem (2.3) admits an
equivalent formulation with a convex feasible region.

Theorem 2.2 Let y? be an optimal solution of problem

min
y∈F

u(y) := y0 +
p∑
i=1

ri∏
j=1

yij (2.5)

where F := Y + Rm
+ . Then y? is also an optimal solution of (2.3). Conversely, if y? solves (2.3),

then y? also solves (2.13).

Proof. Since for any x ∈ Ω, y = f(x) is feasible for (2.13), the feasible set of (2.13) contains the
feasible set of (2.3). Therefore, the optimal value of (2.13) is a upper bound for the optimal value
of (2.3). If y? solves (2.13), then

min
x∈Ω
〈w, f(x)− y〉 ≤ 0, for all w ∈ W,

and by Lemma 2.1 there exists x? ∈ Ω such that f(x?) ≤ y?. Actually, f(x?) = y?. Otherwise,
the feasibility of f(x?) for (2.13) and the positivity of u over F would contradict the optimality of
y?. Since f(x?) is feasible for (2.3), we conclude that y? also solves (2.3). The converse statement
is proved by using similar arguments. �

2.1. Relaxation Procedure

Problem (2.13) has a small number of variables, but infinitely many linear inequality
constraints. An adequate approach for solving (2.13) is relaxation. The relaxation algorithm evolves
by determining yk, a global maximizer of u over an outer approximation Fk of F described by a
subset of the inequality constraints (2.4), and then appending to Fk only the inequality constraint
most violated by yk. The most violated constraint is found by computing

θ(y) := max
w∈W

φy(w), (2.6)

where
φy(w) := min

x∈Ω
〈w, f(x)− y〉. (2.7)

Maximin problems as the one described by (2.6) and (2.7) arise frequently in optimization,
engineering design, optimal control, microeconomic and game theory, among other areas.

Lemma 2.3 y ∈ Rm satisfies the inequality system (2.4) if and only if θ(y) ≤ 0.

Proof. If y ∈ Rm satisfies the inequality system (2.4), then minx∈Ω 〈w, f(x) − y〉 ≤ 0 for all
w ∈ W , implying that θ(y) ≤ 0. Conversely, if y ∈ Rm does not satisfy the inequality system
(2.4), then minx∈Ω 〈w, f(x)− y〉 > 0 for some w ∈ W , implying that θ(y) > 0. �
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If θ(yk) > 0, then, as a byproduct, the optimal solution of the maximin problem (2.6)-
(2.7) characterizes the most violated inequality constraint. As the pointwise minimum of linear
functions (indexed by x ∈ Ω), φyk is a concave function. Therefore, θ(yk) is computed by solving
a convex problem.

Some useful properties of θ and φ are discussed in Oliveira and Ferreira (2008, 2010).
In particular, f(x(w0)) − y is a subgradient of φy at any w0 ∈ W , and the graph of φy lies on
(or below) the graph of the hyperplane φy(w0) + 〈f(x(w0)) − y, w − w0〉. This hyperplane is a
supporting hyperplane to the hypograph of φy, which enables piecewise linear approximations for
φy. A l-th approximation for φy would be

φly = min
1≤i≤l

{
〈w, f(x(wi))− y〉

}
. (2.8)

Problem (2.6) is then replaced with the problem of maximizing φly overW , which in turn
can be posed as the linear programming problem

∣∣∣∣∣∣
maximize σ
subject to σ ≤ 〈w, f(x(wi))− y〉, i = 1, 2, ..., l,

w ∈ W, σ ∈ R.
(2.9)

Let (wl+1, σl+1) be the optimal solution of the linear program (2.9). If σl+1−φ(wl+1) is
less than a prescribed tolerance, then θ(y) := σl+1. Otherwise, a new subgradient f(x(wl+1))− y)
is obtained by solving the convex problem in (2.7) and the procedure repeated.

2.2. Basic Algorithm

Consider the initial polytope

F0 :=
{
y ∈ Rm : 0 < y ≤ y ≤ y

}
. (2.10)

The computations of y and y demand m convex and m concave minimizations. While
the computation of y is relatively inexpensive, the computation of y requires the solution of m
nonconvex problems. However, the usual practice of setting the components of y sufficiently large
has been successfully applied.

It is readily seen that the minimization of u over F0 is achieved at y0 = y. The utopian
point y0 rarely satisfies the inequality system (2.4), that is, θ(y0) > 0, in general. By denoting as
w0 ∈ W the corresponding maximizer in (2.6), one concludes that y0 is not in (most violates) the
supporting negative half-space

H0
+ =

{
y ∈ Rm : 〈w0, y〉 ≥ 〈w0, f(x(w0))〉

}
. (2.11)

An improved outer approximation for F is F1 = H0
+ ∩ F0. If y1 that minimizes u over

F1 is also such that θ(y1) > 0, then a new supporting positive half-space H1
+ is determined, the

feasible region of (2.13) is better approximated by F2 = F1 ∩H1
+, and the process repeated. At an

arbitrary iteration k of the algorithm, the following relaxed program is solved:

min
y∈Fk

u(y). (2.12)

Problem (2.12) is a linearly constrained problem of the form∣∣∣∣∣∣∣∣∣
minimize y0 +

p∑
i=1

ri∏
j=1

yij

subject to A(k)y ≥ b(k),
y ≤ y ≤ y,

(2.13)
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where A(k) ∈ Rk×m, b(k) ∈ Rk, y ∈ Rm and y ∈ Rm characterize the matrix representation of Fk.
Thus, the relaxation algorithm for globally solving the generalized multiplicative problem

(1.1) assumes the structure below.

Basic Algorithm

Step 0: Find F0 and set k := 0;

Step 1: Solve the generalized multiplicative problem (2.13) using the rectangular branch–and–
bound algorithm proposed in the next section, obtaining yk;

Step 2: Find θ(yk) by solving the maximin subproblem (2.6)–(2.7). If θ(yk) < ε, where ε > 0 is a
small tolerance, stop: yk and x(wk) are ε–optimal solutions of (2.3) and (1.1), respectively.
Otherwise, define

Fk+1 := {y ∈ Fk : 〈wk, y〉 ≥ 〈wk, f(x(wk))〉},

set k := k + 1 and return to Step 1.

The infinite and finite convergence properties of Algorithm 1 are analogous to those exhibited by
the algorithm derived in (Oliveira and Ferreira, 2010) for generalized multiplicative programming.

3. A Rectangular Branch–and–Bound Algorithm

Observe that differently from (2.3), problem (2.13) has a small number of variables, m,
but infinitely many linear inequality constraints. An adequate approach for solving (2.13) is to adopt
a relaxation technique. The relaxation algorithm evolves by determining yk, a global minimizer
u(y) over an outer approximation Fk of F , and then appending to Fk only the inequality constraint
most violated by yk.

3.1. Lower Bound

It is known that a twice–differentiable function f(y1, . . . , yn) = βyγ11 . . . yγn
n is convex

for yj ≥ 0, γj ≥ 0, j = 1, . . . n, and β > 0. Therefore, for underestimating of f(y) we have: if
γj < 0,∀j, then f(y) is already a convex function, while, if γj > 0 for some j, we need to convert
f(y) into a new function f(y, z) = βyγ11 . . . z

γj

j . . . yγn
n where zj = y−1

j . Since f(y, z) is already a
convex function, we only need to underestimate functions zj = y−1

j for all j.

Theorem 3.1 (Li et al., 2008) The lower bound of a nonconvex posynomial function of the form
f(y1, . . . , yn) = βyγ11 . . . yγn

n , 0 < y
j
≤ yj ≤ yj , γj ∈ R where β > 0, γj < 0, j =

1, . . . ,m, γj > 0, j = m+ 1, . . . , n, is obtained by solving the following convex program:∣∣∣∣∣∣
minimize f(y, z) := βyγ11 . . . yγm

m z
−γm+1

m+1 . . . z−γn
n

subject to 1 ≥ yj
yj

+ y
j
zj −

y
j

yj
, j = m+ 1,m+ 2, . . . , n.

Let Ry denote either the initial rectangle F0 :=
[
y, y
]
, or a subrectangle of it. In each

subrectangle, any feasible point of (2.13) provides an upper bound for the optimal value of (2.13).
The terms of the form

∏ri
j=1 yij are underestimated by introducing new variable z ∈ Rm and an

inequality which depends on the bounds on y (Theorem 3.1). A lower bound for the optimal value
of (2.13) can be obtained by solving the following convex programming problem:
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize z−1
0 +

p∑
i=1

ri∏
j=1

z−1
ij

subject to A(k)y ≥ b(k),

1 ≥ y0

y0

+ y
0
z0 −

y
0

y0

,

1 ≥ yij
yij

+ y
ij
zij −

y
ij

yij
, i = 1, . . . , p, j = 1, . . . , ri,

y ∈ Ry, z ∈ Rz,

(3.1)

where Rz := {z ∈ Rm : 1
y0
≤ z0 ≤ 1

y
0

, 1
yij
≤ zij ≤ 1

y
ij

, i = 1, . . . , p, j = 1, . . . , ri}, yij and

yij(i = 1, . . . , p, j = 1, . . . , ri) are the bounds on the variables yij in some subrectangle Ry. Any
standard approach from the traditional methods of convex optimization can be applied to solve this
problem.

The rectangular branch–and–bound algorithm for globally solving the k-th outer approx-
imation of the generalized multiplicative problem (1.1) assumes the structure below. A similar
convergence results for rectangular branch–and–bound algorithms can be found in (Benson, 2002).

Rectangular Branch–and–Bound Algorithm

Step 0: Find F0, let some accuracy tolerance εBB > 0 and the iteration counter k = 0.

Step 1: Define the initial list L0 := {F0}, and let L0 and U0 be a lower and an upper bound
for the optimal value of problem (3.1), withRy = F0.

Step 2: While Uk − Lk > εBB,

(i) ChooseRy ∈ Lk such that the such that the lower bound overRy is equal to Lk;

(ii) SplitRy along one of its longest edges intoRyI andRyII ;

(iii) Define

Lk+1 :=
(
Lk − {Ry}

)⋃{
RIy,RIIy

}
;

(iv) Compute lower and upper bounds for the optimal values of problems (3.1) with Ry = RIy
and (3.1) withRy = RIIy , set Lk+1 and Uk+1 as the minima lower and upper bounds over all
subrectanglesRy ∈ Lk+1, and k := k + 1.

4. Computational Experiments

The basic algorithm and the retangular branch–and–bound algorithm, which solve outer
approximations of generalized multiplicative problems were coded in MATLAB (V. 7.0.1)/Opti-
mization Toolbox (V. 4) and run on a personal Pentium IV system, 2.00 GHz, 2048MB RAM. The
tolerances for the ε–convergences of algorithm was fixed at 10−5 while the tolerance for the conver-
gence of the branch–and–bound algorithm was fixed at 0.05. In order to illustrate the convergence
of the global optimization algorithms proposed, the following example has been considered.
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Example 4.1 Consider the illustrative problem discussed in (Schaible and Sodini, 1995) where an
alternative algorithm has been proposed:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize (x1 + 1) + (2x1 − 3x2 + 13)(x1 + x2 − 1)

subject to −x1 + 2x2 ≤ 8,
−x2 ≤ −3,
x1 + 2x2 ≤ 12,
x1 − 2x2 ≤ −5,
x1 ≥ 0, x2 ≥ 0.

The functions f0, f11 and f12 (p = 1 and r1 = 2) are convex and positive over the feasible
convex, compact and nonempty region Ω. The lower and upper bounds on y = (y0, y11, y12) are y =
(1.00, 1.00, 2.00) and y = (4.50, 7.25, 6.75), respectively. The relaxation algorithm converges in 2
iterations to x? = (0.00, 4.00), the same solution found in (Schaible and Sodini, 1995), providing
the εBB—optimal value u? = 4.00. At the convergence, UB2 − LB2 = 0.0274.

Example 4.2 As a second numerical experience, consider the generalized convex problem obtained
from (Konno et al., 1994) and (Oliveira and Ferreira, 2010) where outer approximation algorithms
are proposed for globally solving a special class of (1.1). The problem is∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize (3x1 − 4x2 + 15) + (x1 + 2x2 − 1.50)(2x1 − x2 + 4)
+(x1 − 2x2 + 8.50)(2x1 + x2 − 1)

subject to 5x1 − 8x2 ≥ −24,
5x1 + 8x2 ≤ 44,
6x1 − 3x2 ≤ 15,
4x1 + 5x2 ≥ 10,
x1 ≥ 0.

Again, the functions f0, f11, f12, f21 and f22 (p = 2 and r1 = r2 = 2) are convex and pos-
itive over the feasible convex, compact and nonempty region Ω. The lower and upper bounds on y =
(y0, y11, y12, y21, y22) are y = (3.00, 1.00, 1.00, 2.00, 2.00) and y = (22.50, 9.00, 9.00, 11.00, 11.00),
respectively (Konno et al., 1994). The relaxation algorithm converges in 3 iterations to x? =
(0.00, 3.00), the same solutions found in (Konno et al., 1994) and (Oliveira and Ferreira, 2010),
providing the εBB—optimal value u? = 12.50. At the convergence, UB3 − LB3 = 0.0312.

The proposed algorithm converged in 0.83 and 2.11 seconds solving Examples 4.1 and
4.2, respectively. The CPU time of the proposed algorithm tends to increase rapidly as the number
of product terms, p, increase, because the computational effort demanded by the branch–and–bound
algorithm grows exponentially with p.

5. Conclusions

In this work we proposed a global optimization approach for generalized convex mul-
tiplicative programs. By using convex analysis results the problem was reformulated in the out-
come space as an optimization problem with infinitely many linear inequality constraints, and then
solved through a relaxation branch–and–bound algorithm. Experimental results have attested the
viability and efficiency of the proposed global optimization algorithm, which is, in addition, easily
programmed through standard optimization packages. The proposed algorithm can be adapted for
solving the related global optimization problems. This extension of the proposed algorithm is under
current investigation by the authors.
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