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ABSTRACT
The Sloan algorithm is a well-know heuristic for reordering sparse matrices. It is typi-

cally used to speed up the computation of sparse linear systems of equations. This paper presents an
OpenMP parallel Sloan version. The performance is compared with a serial implementation made
available by Boost library. The concept of logical data structure is explored in order to leverage the
parallelism on contiguous memory positions. The algorithm reached profile reduction rates up to
99.67%, and outstanding CPU time improvements were also achieved - up to 99.87%. Furthermore,
speedup ratios up to 3.69X were achieved for a set of large sparse matrices.
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1. Introduction
Computations involving sparse matrices have been of widespread use since the 1950s,

and its applications include electrical networks and power distribution, structural engineering, re-
actor diffusion, and solutions to differential equations [Pooch and Nieder, 1973]. According to
Saad [Saad, 2003], partial differential equations represent the biggest source of sparse matrix prob-
lems. The linear systems that arise from the discretization of these equations are of the typeAx = b,
in which A is a large and sparse matrix, that is, it has very few non-zero (NNZ) entries.

The profile minimization problem (PMP) was originally proposed as an approach to re-
ducing the space requirements for storing sparse matrices [Tewarson, 1973]. Additionally, the PMP
enhances the performance of operations on systems of nonlinear equations. Most methods designed
to reduce the matrix profile are based on the corresponding graph formulation: find a labeling of the
vertices of a graph such that most connections are between vertices having close labels. However,
Lin and Yuan [Lin and Yuan, 1994] proved that the PMP of an arbitrary graph is equivalent to the
interval graph completion problem, which was shown to be NP-complete by [Garey and Johnson,
1990]. Hence, several heuristics and metaheuristics have been proposed for the problem. As ex-
ample, recently a Scatter Search metaheuristic was presented by Sánchez-Oro et al. [Sánchez-Oro
et al., 2015] as the state-of-the-art solution method for the PMP. Moreover, some of the most im-
portant and well-known heuristics for the problem are Reverse Cuthill-McKee [Cuthill and McKee,
1969] and Sloan [Sloan, 1986]. These two last ones use graph search strategies and provide high
quality solutions.

Some parallelizations of solution methods for PMP have been developed in order to reach
greater performance from multi-core processors. Lin [Lin, 2005] introduced a genetic parallel al-
gorithm tailored to this problem, and [Karypis and Kumar, 1998] presented a parallel formulation
of the multilevel graph partitioning and sparse matrix ordering problem. More lately, Karantasis et
al. [Karantasis et al., 2014] developed a parallel implementation of the Sloan algorithm based on
a thread-level speculation model. In this work, a non-speculative parallelization of this same algo-
rithm is proposed. A concept of logical data structure is used in order to leverage the paralellism on
contiguous memory positions. The performance of parallel Sloan is compared with a respective se-
rial implementation made available by Boost library [Siek et al., 2002]. The parallelism is supported
by the OpenMP framework1 and a set of large sparse matrices is used to test the algorithms.

The rest of this paper is organized as follow. In Section 2, a review background infor-
mation is provided and the original serial Sloan algorithm is also presented. Section 3 is dedicated
to detail the non-speculative parallel Sloan algorithm proposed by this work. Section 4 presents
the results from Boost library and parallel Sloan. Conclusions and directions for future work are
included in Section 5.
2. Background

Let A = [aij ] be a structurally symmetric matrix2, whose diagonal elements are all non-
zero. For the ith row of A, i = 1, 2, . . . , n, let

fi(A) = min{j | aij 6= 0}, and βi(A) = i− fi(A).

The number fi(A) is simply the column subscript of the first non-zero component in row i of A.
The number βi(A) is called row width of the ith row, and it is the difference between i and the
column index of the first non-zero element on the ith row. Since the diagonal entries aii are positive
or non-null, fi(A) ≤ i and βi(A) ≥ 0. The bandwidth of A is defined as

β(A) = max{βi(A) | 1 ≤ i ≤ n}
= max{|i− j| | aij 6= 0}.

1OpenMP is a specification for a set of compiler directives, library routines, and environment variables that can be
used to specify high-level parallelism in Fortran and C/C++ programs Dagum and Menon [1998].

2A matrix A = [aij ] is said be structurally symmetric if aij 6= 0 then aji 6= 0, but not necessarily aij = aji.
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The number βi(A) is called the ith bandwidth of A. So, the band of A is defined as Band(A) =
{{i, j} | 0 < i− j ≤ β(A)}, which is the region within β(A) locations of the main diagonal. This
region is delimited, in each row, by the columns i and j. The union of all sub-regions per row is
denoted by {i, j}.

A slightly more sophisticated scheme for exploiting sparsity is the so-called envelope or
profile, which simply takes advantage of the variation in βi(A) with i. The envelope of A, denoted
by Env(A), is defined by Env(A) = {{i, j} | 0 < i− j ≤ βi(A)}. In terms of the column subscripts
fi(A), the relation is Env(A) = {{i, j} | fi(A) ≤ j < i}. The envelope of a structurally symmetric
matrix is easily visualized: picture the lower triangle of the matrix, and remove the diagonal and
the leading zero elements in each row. The remaining elements (whether non-zero or zero) are in
the envelope of the matrix [Kumfert and Pothen, 1997]. The number of these elements defines the
quantity —Env(A)— called profile or envelope size of A, and is given by

|Env(A)| =
n∑

i=1

βi(A).

The matrix example in Figure 1 has a bandwidth of 3 and a profile of 11.

A =



× × ×
× ×
0 0 × × ×
× 0 0 × ×

0 × × × ×
× 0 0 × ×

0 × × ×


β(A)

i fi(A) βi(A)

1 1 0
2 1 1
3 3 0
4 1 3
5 3 2
6 3 3
7 5 2∑

11

Figure 1: Example of bandwidth and profile.

2.1. Sloan Algorithm
The idea of Sloan’s algorithm [Sloan, 1986] is to number vertices from one point of an

approximate diameter in a unweighted graph, choosing the next vertex to number from among the
neighbors of currently numbered vertices and their neighbors. A vertex of maximum priority is
chosen from this eligible subset of vertices. Based on this, the Sloan algorithm may be described
as a composition of two distinctive phases: (1) selection of a start vertex s and an end vertex e, and
(2) vertex reordering. Step 1 looks for a pseudodiameter of the graph and choose s and e to be the
endpoints of the pseudodiameter. In Step 2, the pseudodiameter is used to guide the reordering.

Each vertex of the graph is given a priority and the start vertex s is ordered first. Then,
at each stage, the next vertex is chosen among eligible vertices with the highest priority. Thus, a
balance is maintained between the aim of keeping the profile small and bringing in vertices that
have been left behind (far away from e). The list of eligible vertices comprise those that are in the
front (neighbors of one or more renumbered vertices) or neighbors of one or more vertices in the
front [Hu and Scott, 2001].

Algorithm 1 gives a sketch of the serial Sloan. At each step, a node in the graph can be
in one of these four states: (i) numbered; (ii) active; (iii) preactive, a non-numbered and non-active
node that is a neighbor of an active node; and (iv) inactive, all other nodes. Initially the source
node is preactive and all other nodes are inactive (lines 1-5). The algorithm iterates through all
the nodes in the graph and at each step it chooses among the active or preactive nodes the one that
maximizes the priority (lines 8-23). New priorities are assigned to the neighbors and their neighbors
are selected (lines 24-31).

4063



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

Algorithm 1 Serial Sloan Algorithm
Input: Graph G, Weight W1, W2, Node s, e

1: foreach (Node n : G.nodes) {
2: n.status = inactive;
3: n.priority = W1 * n.distance - W2 * n.degree;
4: }
5: s.status = preactive
6: Worklist wl = { s };
7: nextId = 0; P[nextId++] = s;
8: foreach (Node n : wl) ordered by (-n.priority) {
9: foreach (Node v : G.neighbors(n)) {

10: if ( n.status == preactive ∧ (v.status == inactive ∨ v.status == preactive)) {
11: update(v.priority);
12: v.status = active;
13: updateFarNeighbors(v, wl);
14: } else if (n.status == preactive ∧ v.status == active) {
15: update(v.priority);
16: } else if (n.status == active ∧ v.status == preactive) {
17: update(v.priority);
18: v.status = active;
19: updateFarNeighbors(v, wl);
20: } }
21: P[nextId++] = n;
22: n.status = numbered;
23: }
24: function UPDATEFARNEIGHBORS(Node v, Worklist wl) {
25: foreach (Node u : G.neighbors(v)) {
26: if (u.status == inactive) {
27: u.status = preactive;
28: wl.push(u);
29: }
30: update(v.priority);
31: } }

3. A Parallel Sloan Algorithm
According to Karantasis et al. [Karantasis et al., 2014], the most natural parallelization

of Sloan algorithm is to process multiple iterations of the outermost loop (lines 8-23) of the Algo-
rithm 1 in parallel. However, this natural strategy presents two main challenges to the paralleliza-
tion. First, the outer loop relies on a priority queue to determine the next active node to examine.
Second, for each active node, a significant portion of the graph must be manipulated, and it is likely
that two successive active nodes will have overlapping neighborhoods.

In order to work around these challenges, this work uses an alternative approach to guide
the nodes traversing based on priority orders. The serial Sloan (Algorithm 1) as well as the spec-
ulative parallel Sloan described by Karantasis et al. [Karantasis et al., 2014], sort all active and
preactive nodes by the priority. The best ranked nodes are processed and the respective priority and
status of them are updated. The parallel Sloan implemented in this work, on the other hand, makes
no use of a sorting operation through each iteration. Actually, it uses a concept of logical bags to
drive the nodes processing. The bag data structure is an unordered collection of elements in which
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the order of insertion is completely irrelevant. Furthermore, elements can be inserted and removed
entirely at random [Budd, 2016]. The idea behind logical bags employed in the implemented Sloan
algorithm is to identify collections of nodes that may be seen as bag of priorities. In other words,
instead of sorting nodes to process them in the correct priority order, our parallel Sloan algorithm
keep a reference for each collection of nodes (logical bags) which are grouped by the priority. Thus,
after determining the logical bag with highest priority, the respective elements are recovered and
processed. If a node priority is updated, the corresponding node reference is updated accordingly.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
nodes: e b d a m j c t u i a b c

priorities: 14 2 4 13 11 14 15 13 12 14 8 12 10

1 2 3 4 5 6 7 8 9 10
logical bags: 2 4 8 10 11 12 13 14 15

size: 1 1 1 1 1 2 2 3 1

Figure 2: Logical bags used by Parallel Sloan.

Figure 2 presents an example of the logical bags used by the parallel Sloan algorithm.
Nine priority bags are identified in the array of nodes. Three of them are highlighted by colors: one
of size 3 is shaded with gray, and other two bags of size two are shaded with pink and green. An
auxiliary array of logical bags stores the size of each bag. It is updated after each node processing.
In this work, the logical bags strategy was implemented as detailed by Algorithm 2. Each vertex of
the graph is given a initial priority P (i) (line 6) such that

P (i) =W1 distance(i, start node)−W2 degree(i)

where W1, and W2 are positive weights. These weights used to ponder the nodes priority were
chosen following the recommendation reported by Sloan [Sloan, 1986] and highlighted by Reid
and Scott [Reid and Scott, 2012]. Thus, the Bag-based Sloan implementation has used the pair (2,
1) as weights for the global priority function.

As the nodes priorities are stored in a static array, and the priorities generated by Sloan
algorithm may be negative values, thus, firstly, the algorithm carries out a priority value shifting.
For this change, the minimum priority is determined (lines 4-11) and it is used as offset for all other
priority values (line 13). It is important to notice that the array of priorities is a two-dimensional
array. The first row stores the current priority value and the second row stores the most updated
value. Initially, both positions have the same value (line 14).

Algorithm 3 presents the Parallel Bag-based Sloan algorithm implemented in this work.
First of all, a level structure is built through a Breadth-First Search procedure (line 1). As it is
based on the concept of logical bags, its second step involves the generation of the initial set of
priority bags. Algorithm 2 is invoked (line 2) for this task. The size of the logical bags array is
overestimated using as base the priority of the start node and an empirical factor (line 3). As the
number of bags must be determined before the use of them by the Bag-based Sloan (Algorithm 3),
the PRIORITY FACTOR constant constitutes a way to oversize the maximum number of bags.
Several tests were made in order to identify a relation between the initial priority of the pseudo-
peripheral start node (start node) and the number of bags. No closed expression has been found
associating these two variables. Nevertheless, taking the start node as input for a number of bags
estimation, the set of executed tests have shown no wide variation between the expected value and
the obtained value. This narrow variation made possible the definition of a factor to compose an
overestimated computation for the size of the array of bags. In this way, the value of 10 has been
assigned to the PRIORITY FACTOR used in the Bag-based Sloan algorithm.
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Algorithm 2 Parallel Priority Bags Generator Algorithm
Input: Graph G, Weight W1, W2

1: int minPriority = INFINITY;
2: int priority[G.numNodes][2];
3: parallel {
4: int minThreadPriority = INFINITY;
5: foreach (Node n : G.nodes) {
6: priority[n][CURRENT] = W1 * n.distance - W2 * n.degree;
7: if (priority[n][CURRENT] < minThreadPriority)
8: minThreadPriority = priority[n][CURRENT];
9: }

10: atomic if (minThreadPriority < minPriority)
11: minPriority = minThreadPriority;
12: foreach (Node n : G.nodes) {
13: priority[n][CURRENT] -= min priority;
14: priority[n][NEW] = priority[n][CURRENT];
15: } }
16: return priority;

Each iteration executed by the outermost loop of the Algorithm 3 is composed by three
stages. (1) Choice of the maximum priority bag. At lines 8 to 14, the set of priority bags refer-
ences are analysed in order to identify the maximum non-empty bag. As each position of the array
of logical bags corresponds to an specific bag reference, the array is iterated in a reverse order.
Thus, as soon as a bag is found, the traversing is interrupted (line 13) and a maximum priority bag
is identified (line 12). This step is executed by just one thread (serial algorithm region).

(2) Priority bag processing. This stage is executed by the loop at lines 15 to 39. It cor-
responds to the step of the serial Sloan in which vertices are numbered and its respective neighbors
and their neighbors have their priorities and status updated. Naturally, all updates are guided by
the sequence of four status proposed by the Sloan algorithm. It is important to notice that only
nodes belonging to the maximum bag priority are processed in this stage. However, there is not an
arrangement of nodes in order to group them into the appropriated max bag. This grouping of nodes
is carried out by matching the priority of each one with the priority of the maximum bag chosen at
the first stage (line 16).

(3) Bags size update. The last loop (lines 41-46) executes the update of each bag priority
size. When a node priority is updated, this fact may be seen like a node going out from the previous
priority bag to the new priority bag. As the algorithm uses just the concept of bag, i.e., it does
not use any bag data structure, so these operations related to nodes coming in and coming out of
priority bags are emulated by decreasing and increasing the size of the bags respectively (lines
43 and 44). Moreover, a priority node updating is identified by the comparison between the last
modified priority (NEW position of priority array) and the current one (CURRENT position). If
both are different, there was a priority updating (line 45).

Following a parallelization feature suggested by Karantasis et al. [Karantasis et al., 2014],
the Bag-based Sloan algorithm proposed in this work also implements atomic operations at the node
update level rather than at the whole iteration level. All status and priority updates are serialized
by an atomic operator. Nevertheless, the whole iteration is executed in a parallel way. The same
takes place during the bags size updating in the last stage. Naturally, when multiple threads update
multiple nodes at the same time, the order of each update varies between an algorithm execution
and another one. It leads to different permutation arrays, and, hence to different nodes reordering.
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Algorithm 3 Parallel Bag-based Sloan Algorithm
Input: Graph G, Weight W1, W2, Node start, end

1: G = Breadth First Search(G, start);
2: int[][] priority = Priority Bag Generator(G, W1, W2);
3: int num bags = PRIORITY FACTOR * priority[start][CURRENT];
4: int[num bags] bags; start.status = PREACTIVE; nextId = 0;
5: bags[priority[start][CURRENT]]++;
6: parallel {
7: while (nextId < G.size) {
8: serial { // Choosing maximum priority bag
9: int max priority = 0;

10: foreach (int prior bag : [num bags, 0]) {
11: if (bags[prior bag] > 0) {
12: max priority = prior bag;
13: break;
14: } } }
15: foreach (Node n : G.nodes) { // Processing logical bag
16: if (n.status 6= NUMBERED ∧ priority[n][CURRENT] == max priority) {
17: foreach (Node v : n.neighbors) {
18: update far = FALSE;
19: if (n.status == PREACTIVE ∧ (v.status == INACTIVE ∨ PREACTIVE) {
20: atomic priority[v][NEW] += W2;
21: atomic v.status = ACTIVE;
22: update far = TRUE;
23: } else if (n.status == PREACTIVE ∧ v.status == ACTIVE) {
24: atomic priority[v][NEW] += W2;
25: } else if (n.status == ACTIVE ∧ v.status == PREACTIVE) {
26: atomic priority[v][NEW] += W2;
27: atomic v.status = ACTIVE;
28: update far = TRUE;
29: }
30: if (update far) {
31: foreach (Node u ∈ v.neighbors ∧ u 6= n) {
32: if (u.status == INACTIVE)
33: atomic u.status = PREACTIVE;
34: atomic priority[u][NEW] += W2;
35: } } }
36: atomic {
37: bags[priority[n][CURRENT]]--;
38: P[nextId++] = n; n.status = NUMBERED;
39: } } }
40: // Updating size of bags
41: foreach (Node n ∈ G.nodes ∧ n.status 6= NUMBERED) {
42: if (priority[n][CURRENT] 6= priority[n][NEW]) {
43: atomic bags[priority[n][CURRENT]]--;
44: atomic bags[priority[n][NEW]]++;
45: priority[n][CURRENT] = priority[n][NEW];
46: } } } }
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4. Experimental Results
As the source code of the original parallel algorithm is not available for public use, the

performance evaluation of the parallel Bag-based Sloan was against a respective serial implemen-
tation made available by Boost Library [Siek et al., 2002]. A set of twenty structural symmetric
and square matrices was selected from the University of Florida Sparse Matrix Collection [Davis
and Hu, 2011]. These matrices cover multiple type of problems in order to increase the dataset
variety and the percentage of sparsity of each one is higher than 99.90%.The set of tested matrices
is shown in Table 1. The columns present matrices and some characteristics of them: size (number
of rows/columns) and number of non-zeros.

Table 1: Sparse Tested Matrices.

# Matrix Size Non-zeros # Matrix Size Non-zeros
01 m t1 97,578 9,753,570 11 inline 1 503,712 36,816,170
02 filter3D 106,437 2,707,179 12 gsm 106857 589,446 21,758,924
03 SiO2 155,331 11,283,503 13 Fault 639 638,802 27,245,944
04 d pretok 182,730 1,641,672 14 tmt sym 726,713 5,080,961
05 CO 221,119 7,666,057 15 boneS10 914,898 40,878,708
06 offshore 259,789 4,242,673 16 audikw 1 943,695 77,651,847
07 Ga41As41H72 268,096 18,488,476 17 nlpkkt80 1,062,400 28,192,672
08 F1 343,791 26,837,113 18 dielFilterV2real 1,157,456 48,538,952
09 mario002 389,874 2,097,566 19 Serena 1,391,349 64,131,971
10 msdoor 415,863 19,173,163 20 G3 circuit 1,585,478 7,660,826

Table 2: Parallel Sloan Comparison - Profile and CPU time (sec.)

Matrix Final Profile Reordering Time Threads
# Profile Boost Bag Boost Bag # Speedup
01 250,103,781 116,018,656 117,597,457 2.661 0.102 04 3.69
02 260,719,523 94,647,226 102,301,580 2.262 0.025 12 3.36
03 2,482,485,963 1,747,699,515 1,752,130,242 24.026 0.047 12 2.38
04 5,143,933,251 183,016,114 230,212,781 3.343 0.013 04 3.21
05 4,463,242,951 2,901,790,897 2,942,437,379 40.754 0.058 04 3.03
06 3,588,201,815 1,306,762,040 1,535,446,907 19.826 0.080 12 2.80
07 6,188,064,837 5,061,789,451 5,120,317,933 71.836 0.094 04 2.59
08 41,341,166,041 802,493,269 887,690,105 16.461 0.109 12 2.47
09 48,023,597,183 114,504,010 158,902,510 2.167 0.084 08 2.52
10 23,550,593,343 681,799,054 682,817,688 11.733 0.306 04 2.95
11 57,452,838,418 1,030,990,936 1,024,217,929 19.644 0.217 12 2.61
12 161,502,078,777 1,741,744,855 2,029,470,672 32.637 0.365 04 1.83
13 8,421,729,249 5,999,798,831 6,603,660,438 81.144 0.908 08 2.81
14 593,531,565 595,428,857 596,248,727 6.717 0.598 08 2.72
15 6,345,023,025 4,087,417,386 4,040,804,407 62.442 3.205 08 2.53
16 390,218,762,952 7,046,316,450 7,840,128,498 149.580 0.242 04 2.43
17 275,456,486,321 21,884,523,357 21,889,103,451 342.581 0.983 12 2.42
18 550,359,970,640 4,997,283,308 6,765,505,540 113.890 0.287 12 2.33
19 77,321,314,974 31,769,020,684 32,332,635,404 791.253 3.786 08 2.37
20 119,101,864,114 2,946,942,317 2,976,611,592 32.731 1.343 08 2.47
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The program was coded in the C language and the parallelism was supported by OpenMP
framework. The complete source code is available on a GitHub repository [Rodrigues, 2017]. The
experiments were performed on a PC running Ubuntu Linux, version 14.04.5 LTS, with Kernel
version 3.19.0-31. It consists of a Intel i7-3610QM processor of 4 cores operating at 2.3 GHz.
Each core has a unified 256KB L2 cache and the processor has a shared 6MB L3 cache. The PC
contains 8GB of main memory, the code was compiled with GNU Compiler Collection (GCC)
version 5.4.0, and −O3 optimization flag was turned on. Moreover, the Compressed Sparse Row
format (CSR) [Farzaneh et al., 2009] was the mechanism used to store each tested matrix. The
operations applied on them were also performed using this format.

Table 3: Percentages of Final Profile Variation and CPU time Reduction - Boost x Bag Sloan

Matrix Profile Var. Time Red. Matrix Profile Var. Time Red.
m t1 -1.177 96.17 inline 1 +0.012 98.90
filter3D -4.609 98.89 gsm 106857 -0.180 98.88
SiO2 -0.603 99.80 Fault 639 -24.933 98.88
d pretok -0.951 99.61 tmt sym † 91.10
CO -2.603 99.86 boneS10 +2.065 94.87
offshore -10.024 99.60 audikw 1 -0.207 99.84
Ga41As41H72 -5.197 99.87 nlpkkt80 -0.002 99.71
F1 -0.210 99.34 dielFilterV2real -0.324 99.75
mario002 -0.093 96.12 Serena -1.227 99.52
msdoor -0.004 97.39 G3 circuit -0.026 95.90

† denotes that there was no profile reduction.

Both algorithms Sloan from Boost library and the parallel Bag-based Sloan were per-
formed five times for each pair (mi, tj), where mi is a sparse matrix, and tj is the number of
threads between 1 and 12 (in steps of 2) used by each algorithm. For each (mi, tj) tested pair,
the average was calculated from the reported values. In order to confront the algorithms, for each
matrix mi, it was selected the number of threads tj that reached the best value considering the CPU
time. Moreover, the speedup S computed for the parallel Sloan algorithm was calculated according
to expression S(n) = T1

Tn
, where T1 is the run-time of the parallel Bag-based Sloan executed with

one thread, and Tn is the run-time of the same algorithm executed with n threads.
Table 2 presents a comparison of the algorithms performance according to the profile af-

ter reordering and CPU time. The two columns grouped under Threads indicate (i) the number of
threads (column #) that produced the best CPU time, and (ii) the speedup ratio (column Speedup)
reached with the related set of threads. For all tested matrices, the implemented parallel Sloan
shown an outstanding reordering performance. In fact, the best CPU time was attained by Bag-
based Sloan for the whole set of sparse matrices. Table 3 describes the percentage of the time
reduction between the two evaluated algorithms (column Time Red.). As displayed by it, the par-
allel Bag-based Sloan achieved CPU time reductions ranging from 91.10% (tmt sym) to 99.87%
(Ga41As41H72) when compared with the Boost library implementation.

Even though the final profile produced by Boost library has been better than the imple-
mented Sloan, the percentage of variation between the two algorithms was very slight. Indeed,
Table 3 presents the variation ratio between the profile percentage reduction (column Profile Var.)
reached by the algorithms. As can be seen in Table 3, only for two matrices - Fault 639 and
offshore - the variation was significant - 24,933% and -10.024%, respectively. For all others
tested matrices, the ratio was inferior to 5.2%. However, these differences are negligible when
compared with the initial profile. Furthermore, for the matrices inline 1 and boneS10, the percent-
age of profile variation was positive for the Bag-based Sloan algorithm, i.e., it has reached a better
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profile minimization than Boost library. An exception was the matrix tmt sym - both algorithms
were not able to produce any profile reduction.

Figure 3: Bag-based Sloan speedup.

(a) m t1 (b) filter3D (c) d pretok (d) CO (e) msdoor

Figure 4: Profile pattern after reordering

The five highest speedups reached by Bag-based Sloan algorithm are displayed in Fig-
ure 3. As presented by the speedup graphic, there was a performance decrease when the five
matrices were processed with six threads. Since the algorithm does not implements any specific
load balance policy, every level of oversubscription may lead to a non-deterministic effect on the
performance. Actually, running the algorithm with a number of threads higher than the number of
available cores may (i) cause the Operating System (OS) continually move threads between cores in
an effort to balance the load, or (ii) persuade the OS to give the OpenMP code a larger share of the
CPU resources. In the first case, the performance can be compromised as observed when running
the Bag-based Sloan algorithm with 6 threads. On the other hand, if the second behavior happens, a
performance improvement can be seen as detected through the experiments with 8 and 12 threads.
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Despite this unpredictable behavior when the algorithm is executed with oversubscribed
threads, the tests with all aforementioned five matrices shown a relevant speedup. In fact, the
implemented algorithm achieved a performance improvement ratio up to 3.69X (m t1), 3.36X
(filter3D), 3.21X (d pretok), 3.03X (CO), and 2.95X (msdoor). In contrast with the original
algorithm [Karantasis et al., 2014], the scalability of the proposed algorithm did not show a close
relationship with the number of non-zeros per row of a tested sparse matrix. Actually, instead of
traversing the graph guided only by a level structure, the Bag-based Sloan algorithm takes also into
account the priority clusters of nodes (bags of nodes). Because of this, a graph with a large number
of edges per node do not necessarily cause a speedup boosting. In fact, considering this set of five
matrices, four of them (m t1, filter3D, CO, and msdoor) present a high average of NNZ/row:
100, 25, 35, and 46, respectively. On the other hand, this is not the case of the matrix d pretok,
which has around only 9 NNZ/row. Additionally, the reordering quality attained by these same
matrices can be attested by the profile pattern generated by them after applying the permutation.
Figure 4 highlights graphically the Bag-bases Sloan efficiency for the profile minimization prob-
lem. The first row exhibits the original profile of each matrix. The respective column in the row
below shows the sparsity pattern of the correspondent matrix after the reordering.
5. Conclusions

This paper presented a parallel version of Sloan heuristic whose nodes processing is con-
trolled by a logical data structure. The algorithm performance and the reordering quality produced
by it were compared with the results achieved by its respective serial version made available by
Boost library. The implemented algorithm has improved the Boost CPU time up to 99.87%, and
the highest speedup reached by it was of 3.69X running with four threads. The sparsity pattern ob-
tained by applying the permutation generated by the algorithm also attests its efficiency. In fact, the
reductions attained by it various from 91.10% to 99.87% of the original profile. Based on these per-
formance outcomes, the Bag-based Sloan algorithm may be recommended as an efficient parallel
heuristic for the profile minimization problem.

Some features have shown themselves to be heavy factors for the performance of Sloan
algorithm. It is the case of the priority function and the underlying data structure used to support
the nodes processing. Improved serial versions of the Sloan were already published with more elab-
orated priority functions [Kumfert and Pothen, 1997]. Furthermore, some works in the literature
have addressed the reordering problem through the use of other data structures. As example, [Leis-
erson and Schardl, 2010] propose a novel implementation of a worklist data structure, called bag,
in place of FIFO queue usually employed in level-based algorithms. The use of this new structure
and the experiments with different priority functions might promote more improvements to the al-
gorithm studied in this work. Moreover, additional experiments on a machine with a higher number
of available cores constitutes an important complementary test to be made in order to better explore
the algorithm’s scalability.
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