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ABSTRACT

The high school timetabling problem has been frequently considered in the literature,
but few studies employing parallel strategies have been proposed. In this paper, we propose a
parallel cooperative multi-start approach. The method constructs an initial feasible solution via a
Proximity Relax-and-Fix heuristic and applies a Parallel Multi-Start Iterated Local Search to further
improve the initial solution. Computational experiments with practical instances show that our
approach outperforms the state-of-the-art algorithms for variants of the problem. Our results clearly
demonstrate the power of this type of approach to deal with complex combinatorial problems, such
as the high school timetabling problem.
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Introduction
The scientific literature has branched educational timetabling problems in three main fam-

ilies: University course timetabling [Lewis et al., 2007; Di Gaspero et al., 2007], high school
timetabling [Pillay, 2014] and examination timetabling [McCollum et al., 2007]. Each category
contains a rich number of specific constraints and particularities.

In this paper, we investigate parallel metaheuristics for the high school timetabling prob-
lem (HSTP). Due to its combinatorial characteristics, the HSTP resolution has been mainly based
on approximations by sequential metaheuristics. According to our knowledge, only four studies
have addressed the design of parallel metaheuristics for HSTP. Abramson [1991] proposed a Simu-
lated Annealing which analyzes several simultaneous moves. Abramson and Abela [1992] proposed
a Genetic Algorithm that evaluates several individuals of the population in parallel. Srndic et al.
[2009] proposed a Genetic Algorithm which splits the global population into small islands that are
managed in parallel. Saviniec et al. [2015] proposed an Iterated Local Search that, at each iteration,
chooses the best local minimum among a set of local minima returned by multiples local search
procedures running simultaneously.

Alba et al. [2013] reviewed the literature of parallel metaheuristics and identified a fast
grown on these techniques in the last few years. The authors also classified the parallel frameworks
and enumerated a few challenge topics that will be the main lines of research in the upcoming years.

According to Alba et al. [2013], parallel metaheuristics can be classified into population-
based and trajectory-based methods. Population-based metaheuristics are methods that keep a pool
of solutions (e.g. Genetic Algorithms and Ant Colony Optimization). Trajectory-based metaheuris-
tics are methods that keep a single current solution (e.g. Simulated Annealing and Tabu Search).
These two categories can also, be classified by the type of framework implementation [Alba et al.,
2013].

Population-based metaheuristics can be classified into i) Parallel individuals evaluation –
several individuals in the population are evaluated in parallel, and ii) Parallel islands – the popula-
tion is split into subpopulations that can be managed in parallel.

Trajectory-based metaheuristics can be classified into i) Parallel moves – the neighboring
solutions of the current solution are searched in parallel, ii) Move acceleration – the objective
function of a single solution may be decomposed and evaluated in parallel, and iii) Parallel multi-
start – several asynchronous threads, cooperative or independent, run simultaneously to search
different regions of the solution space.

Among the hot topics for future research in parallel metaheuristics, Alba et al. [2013]
point out the design of parallel versions of well-known metaheuristics that could benefit from spe-
cific hardware architectures. In this paper, we propose a parallel multi-start approach based on
Iterated Local Search that is suitable for multi-core machines. The algorithm is designed to exploit
diversification, intensification, and cooperation among asynchronous threads during the search. We
also propose a constructive heuristic based on Relax-and-Fix [Dillenberger et al., 1994] and Prox-
imity Search [Fischetti and Monaci, 2014] to provide initial solutions to our parallel approach.

The remainder of the paper is organized as following. Section 2 describes the addressed
problem by a mixed-integer programming formulation. Section 3 explains our parallel approach.
Section 4 presents and discusses our computational experiments. The paper ends in Section 5 with
some final remarks.

The high school timetabling problem
We focus on an HSTP motivated by rules of Brazilian high schools. In this context, the

schools have a set of classes and a set of teachers. Classes are disjoint groups of students enrolled
in the same set of subjects (e.g.: mathematics, physics and etc.). Each subject has a pre-assigned
teacher and a number of meetings that must be scheduled to run during the week (e.g. Monday to
Friday). The goal of the problem is to obtain a weekly timetable for these meetings. An input of
the problem is described by the following definitions:
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Notation Definition
Sets
C a set of classes.
T a set of teachers.
D a set of weekdays.
H a set of periods per day, which is equal to every day.
Htd the set of periods for which teacher t ∈ T is available during day d ∈ D.
R a set of subjects’ requirements. A requirement specifies that a teacher t ∈ T

and a class c ∈ C must meet a specified number of times during the week.
Rc the set of requirements that belongs to class c ∈ C.
Rt the set of requirements that belongs to teacher t ∈ T .
Parameters
θ̃r ∈ N the number of weekly meetings specified in requirement r ∈ R.
δ̃r ∈ N a daily limit for lessons involving requirement r ∈ R.
π̃r ∈ N a desired number of double lessons for requirement r ∈ R. Double lessons are

two lessons in consecutive periods of the same day.

An output of the problem is represented by a set of binary variables xrdh which indicate
whether the r-th requirement is scheduled to period h ∈ H of day d ∈ D. A feasible solution is an
assignment of values to variables xrdh that respects the following hard requirements:

1. Meeting of weekly required lessons: each requirement must be scheduled.∑
d∈D

∑
h∈H

xrdh = θ̃r ∀ r ∈ R (1)

2. No clashes in classes’ schedules: each class must attend exactly one meeting per period.∑
r∈Rc

xrdh = 1 ∀ c ∈ C; d ∈ D; h ∈ H (2)

3. No clashes in teachers’ schedules: each teacher must teach at most one lesson per period.∑
r∈Rt

xrdh ≤ 1 ∀ t ∈ T ; d ∈ D; h ∈ Htd (3)

4. No assignment of teachers in their unavailable periods: teachers must not be assigned to
their unavailable periods.∑

r∈Rt

xrdh = 0 ∀ t ∈ T ; d ∈ D; h ∈ H \Htd (4)

5. No daily workload violation for requirements: each requirement r ∈ R must not be in-
volved in more than δ̃r meetings per day.∑

h∈H
xrdh ≤ δ̃r ∀ r ∈ R; d ∈ D (5)

6. No holes in requirements’ schedules: the schedule of each requirement must be consecutive
within the same day.

xrdi − xrdh + xrdj − 1 ≤ 0 ∀ r ∈ R; d ∈ D; h = 1, · · · , |H| − 2;

i = 0, · · · , h− 1; j = h+ 1, · · · , |H| − 1 (6)

An optimal feasible solution minimizes the penalties associated with the following soft
requirements:

7. Meeting of double lessons for requirements: for each requirement r ∈ R, the minimum
number of π̃r consecutive double lessons should be met. The auxiliary variables φ̂rdh are set
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to 1 if a double lesson ends in periods h = 1, · · · , |H| − 1 within each day, while variables
π̂r quantify the number of unmet weekly double lessons.

φ̂rdh ≤ xrdh ∀ r ∈ R; d ∈ D; h = 1, · · · , |H| − 1 (7)
φ̂rdh ≤ xr,d,h−1 ∀ r ∈ R; d ∈ D; h = 1, · · · , |H| − 1 (8)

φ̂rdh ≤ 1− φ̂r,d,h−1 ∀ r ∈ R; d ∈ D; h = 2, · · · , |H| − 1 (9)

π̂r ≥ π̃r −
∑
d∈D

|H|−1∑
h=1

φ̂rdh ∀ r ∈ R (10)

φ̂rdh ≥ 0 ∀ r ∈ R; d ∈ D; h = 1, · · · , |H| − 1 (11)
π̂r ≥ 0 ∀ r ∈ R (12)

8. No idle periods in teachers’ schedules: teachers should not have idle periods in their daily
schedules. A teacher t is idle in periods h = 1, · · · , |H| − 2 of a day d if he/she is not
busy, but is busy in earlier and later periods of the same day. Idles periods are flagged by the
auxiliary variables ĵtdh.

ĵtdh ≥
∑
r∈Rt

(xrdi − xrdh + xrdj)− 1 ∀ t ∈ T ; d ∈ D; h = 1, · · · , |H| − 2;

i = 0, · · · , h− 1; j = h+ 1, · · · , |H| − 1 (13)
ĵtdh ≥ 0 ∀ t ∈ T ; d ∈ D; h = 1, · · · , |H| − 2 (14)

9. Compact schedules for teachers: for each teacher, the weekly schedule should encompass
a minimum number of working days.

d̂td ≥
∑
r∈Rt

xrdh ∀ t ∈ T ; d ∈ D; h ∈ Htd (15)

d̂td ≥ 0 ∀ t ∈ T ; d ∈ D (16)

The complete problem can thus, be described by the following mixed-integer program-
ming (MIP) formulation.

Minimize f(x) =
∑
r∈R

α7π̂r +
∑
t∈T

∑
d∈D

α9d̂td +

|H|−2∑
h=1

α8ĵtdh (17)

Subject to:
(1)− (16) (18)

xrdh ∈ {0, 1} ∀ r ∈ R; d ∈ D; h ∈ H (19)

The objective function (17) minimizes the number of violations in requirements i =
7, · · · , 9. The constant αi is an associated penalty that express the importance of the i-th require-
ment.

This formulation can also be augmented by the cuts (20), proposed by Souza [2000],
which specify that a teacher cannot work less than a minimum number of working days.

∑
d∈D

d̂td ≥ max

{⌈∑
r∈Rt

θ̃r

|H|

⌉
, max
r∈Rt

{⌈
θ̃r

δ̃r

⌉}}
∀ t ∈ T (20)

The proposed approach
We propose an approach with constructive and improvement phases. The approach ap-

plies a heuristic based on Relax-and-Fix and Proximity Search (Section 3.1) to construct an initial
feasible solution that is further improved by a Parallel Multi-Start Iterated Local Search (Section
3.2).
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The constructive Proximity Relax-and-Fix heuristic (PRF)

The original Relax-and-Fix (RF) [Dillenberger et al., 1994] is an MIP heuristic that con-
structs integer solutions by solving a series of relaxed sub-problems. Let’s assume that X is the
set of integer variables of an MIP model. The RF heuristic relaxes the integrality of all variables
of X and splits them in n subsets Xk, such that X =

⋃n−1
k=0 X

k. At each iteration k, the variables
belonging to subset Xk are converted to integer and the resulting problem is solved. If it results
in a feasible solution, then the variables of Xk are fixed to their current values and the heuristic
is repeated to iteration k + 1. Otherwise, no solution is possible for the chosen partition and the
heuristic stops. If the RF heuristic does not stop prematurely, it provides an integer solution at the
end.

Algorithm 1 Pseudo-code of the constructive PRF heuristic.

PRF(m0,m)

1 Let m0 be the size of the first partition and m be the size of the remaining partitions.
2 Let P be the linear program of formulation (17) – (19).
3 Initialize P with constraints (1) – (6) and set f(x) = ∅.
4 Let LTS be the list of time-slots (d, h) ∈ D ×H .
5 Shuffle the list LTS.
6 for i = 0 to m0 − 1 do
7 Insert the variables associated with time-slot LTS[i] into partition X0.
8 n = 1
9 for j = m0 to |LTS| − 1 by m do // compute the remaining partitions

10 n = n+ 1
11 for i = j to min{j +m− 1, |LTS| − 1} do
12 Insert the variables associated with time-slot LTS[i] into partition Xn−1.
13 Convert the variables of partition X0 to integer.
14 Solve P .
15 Record the partial integer solution S0 = X0.
16 Fix the variables of partition X0 to their current values.
17 Insert constraints (15) – (16) and the cuts (20) into P and set f(x) = α9

∑
t∈T

∑
d∈D d̂td.

18 for k = 1 to n− 1 do
19 Convert the variables of partition Xk to integer.
20 Solve P .
21 if P is feasible then
22 Record Sk = Sk−1 ∪Xk.
23 Fix the variables of partition Xk to their current values.
24 else
25 Estimate the cost of Sk, given by fk = (f(Sk−1)÷ (m0 + (k − 1)m)) · (m0 + km).
26 Release the variables of partition

⋃k−1
i=0 X

i.
27 Set P with the proximity function ∆(x, x̃) =

∑
j∈Sk−1:x̃j=0 xj +

∑
j∈Sk−1:x̃j=1(1− xj).

28 Insert the cut-off constraint f(x) ≤ fk into P .
29 Solve P .
30 if P is infeasible then
31 return ∅.
32 Record Sk =

⋃k
i=0X

i.
33 Fix the variables of partition

⋃k
i=0X

i.
34 Remove the cut-off constraint and set P with the objective function f(x) = α9

∑
t∈T

∑
d∈D d̂td.

35 return Sn−1.

The drawback of the original RF heuristic, when applied to the HSTP described in Section
2, is that the fixation of a partition Xk, at iteration k, very often leads to an infeasible problem at
iteration k + 1. To overcome this limitation, we propose a variant of the RF heuristic which solves
a proximity problem [Fischetti and Monaci, 2014] to escape from these infeasible partitions. Silva
[2013] proposed a similar strategy to deal with this limitation of the RF heuristic in lot-sizing
problems. The author employs a local branch constraint instead of a proximity model to find new
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feasible partitions and escape from infeasibilities.
The proposed heuristic (PRF) is shown in Algorithm 1. The algorithm is a relax-and-

fix strategy with the addition of lines 25 to 34, that solve the proximity problem to escape from
infeasible partitions. At each iteration k, every time that the algorithm detects an infeasible partition,
the line 25 estimates the cost fk of the partial solution Sk, based on the previous solution Sk−1.
The line 26 releases all fixed variables and lines 27 to 29 set and solve the proximity problem. The
proximity problem tries to find a partial solution Sk that is not greater than fk and minimizes the
changes in the values previously fixed for variables of Sk−1. If the proximity problem is feasible,
a new partial solution Sk is found, all variables in the partition

⋃k
i=0X

i are fixed to their current
values and the algorithm continues in the next iteration. Otherwise, it stops without any solution.

In our implementation, each partition contains the variables associated with a subset of
time-slots (d, h) ∈ D ×H . We defined the first partition with size m0 = 10 time-slots and the rest
with m = 5 time-slots. Also, every time that the program P is solved in lines 14, 20 and 29, we
stop it at the first solution found, to speed up the execution.

The Parallel Multi-Start Iterated Local Search (PMILS)
The proposed Parallel Multi-Start Iterated Local Search (PMILS), shown in Figure 1,

employs a shared-memory manager/works strategy. The central idea of the PMILS is to exploit
diversification/intensification and cooperation among threads. The algorithm has a manager thread
(the diversifier agent) that shares information with N worker threads (the intensifier agents) via two
communication buffers, “InputBuffer” and “OutputBuffer”. All threads are Iterated Local Search
[Lourenço et al., 2003] metaheuristics.

Figure 1: Diagram of communication among the agent threads of the PMILS algorithm.

The PMILS pseudo-code is shown in Algorithm 2. The diversifier agent starts at an initial
solution and at each iteration, puts its local minimum into the input buffer (lines 10–14) to be further
explored by the intensifier agents. The intensifiers get solutions from the input buffer (line 3) and
intensify the search in their nearby neighborhoods (line 6). When an intensifier reaches its time-
limit intT imeLim, it puts its best solution into the output buffer (line 7) to be analyzed by the
diversifier. When the diversifier retrieves a solution Sr from the output buffer (line 15), it checks
for acceptance. If Sr improves its best solution S∗, then the diversifier restarts its search from Sr
(line 19). Otherwise, Sr is discarded.

The difference between the diversifier and the intensifier threads is that, while the diver-
sifier walks through the solution space (lines 6–7) by only restarting from the global best solution
when an improved solution is found (line 19). The intensifiers explore the nearby neighborhood of
the local minima found by the diversifier, by always restarting from their private best solutions, see
line 3 of the ILS procedure.

The timetable solutions used by the PMILS algorithm are represented by non-negative
integer arrays S, where Scdh stores the teacher t ∈ T assigned to teach to class c ∈ C on period
h ∈ H of day d ∈ D. The neighborhood operator is the TQ operator proposed by Saviniec et al.
[2013], which is based on the idea of Kempe Chain Interchanges [Lü et al., 2011] and explores
moves by exchanging conflicting teachers between two time-slots (d, h) ∈ TS, with TS = D ×
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H . The local search procedure is a first improvement strategy that explores all pairs of time-slots
(p, q) ∈ TS × TS, for p 6= q.

Algorithm 2 Pseudo-code of the PMILS algorithm.

DIVERSIFIER(S, divT imeLim,N)

1 Initialize two buffers InputBuffer and OutputBuffer of size N .
2 Initialize N intensifier threads.
3 S∗ = S, Sr = ∅
4 time = 0, added = 0
5 while (time < divT imeLim) do
6 S = PERTURBATION(S, 2) // Apply two random moves
7 S = LOCALSEARCH(S)
8 if f(S) ≤ f(S∗) then
9 S∗ = S

10 gap = 1−max{f(S)− f(S∗), 0} ÷ f(S∗)
11 if GETRANDOM(0, 1) ≤ gap then
12 added = added + InputBuffer .T ryAdd(S)
13 else
14 added = added + InputBuffer .T ryAdd(S∗)
15 removed = OutputBuffer .T ryRemove(Sr)
16 added = added − removed
17 if removed then
18 if f(Sr) < f(S∗) then
19 S = Sr // Restart from the global best solution
20 if f(Sr) ≤ f(S∗) then
21 S∗ = Sr

22 time = CPUTIME()
23 while (added > 0) do
24 OutputBuffer .Remove(Sr)
25 added = added − 1
26 if f(Sr) < f(S∗) then
27 S∗ = Sr

28 for k = 1 to N do
29 InputBuffer .Add(NULL)
30 BARRIERWAIT()
31 return S∗

INTENSIFIER(intT imeLim)

1 S = ∅
2 while (true) do
3 InputBuffer .Remove(S)
4 if S = NULL then
5 break
6 S = ILS(S, intT imeLim)
7 OutputBuffer .Add(S)
8 return

ILS(S0, ilsT imeLim)

1 S∗ = S0, time = 0
2 while (time < ilsT imeLim) do
3 S = PERTURBATION(S∗, 1) // Apply one random move
4 S = LOCALSEARCH(S)
5 if f(S) ≤ f(S∗) then
6 S∗ = S
7 time = CPUTIME()
8 return S∗

Computational experiments
We tested the proposed approach with two variants of the problem described in Section

2. The first variant HSTP-A is the problem introduced by Souza [2000], for which we show the
results in Section 4.1. The second variant HSTP-B is a modification of the problem proposed
by Souza [2000], for which we show the results in Section 4.2. The algorithms were coded in
C++ and compiled with GCC on Linux operating system. To implement parallelism, we employed
the Pthreads library available in the GCC compiler. The MIP model and the PRF heuristic were
implemented with callable libraries of CPLEX 12.6.
Results in the HSTP-A

This problem was introduced by Souza [2000]. The problem is a relaxation of the problem
described in Section 2, for which hard constraints (6) are dropped.

3586



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

In this experiment, we tested the proposed approach in the set of seven instances1 pro-
posed by Souza [2000]. The instances, shown in Table 1, have optimal solutions known, which is
a contribution of several previous researches using heuristic solutions [Souza et al., 2003; Santos
et al., 2005; Saviniec et al., 2013; Dorneles et al., 2014] and column generation lower bounds [San-
tos et al., 2012]. According to Santos et al. [2005], the objective function weighting parameters for
these instances are: α7 = 1, α8 = 3, α9 = 9. For this experiment, we set the algorithm PMILS
with parameters N = 3 intensifiers, intT imeLim = 2 seconds and total execution time (the two
phases) of 625 seconds.

Table 1: Features of the instances proposed by Souza [2000].
ID |C| |T | |D| |H|

∑
r∈R θ̃r

∑
r∈R π̃r Optimal values

1 3 8 5 5 75 21 202
2 6 14 5 5 150 29 333
3 8 16 5 5 200 4 423
4 12 23 5 5 300 41 652
5 13 31 5 5 325 71 762
6 14 30 5 5 350 63 756
7 20 33 5 5 500 84 1017

Table 2: Results of 25 runs of our approach compared to previous methods in the instances of Souza [2000].
PRF PMILS ILS F8

ID Time (s) Median Time (s) Median Best Time (s) Best Time (s) Best
1 0.12 358 7.00 202 202 900 202 600 202
2 0.56 668 11.93 333 333 900 333 600 333
3 0.77 700 529.01 426 423 900 423 21600 423
4 6.04 824 19.00 652 652 900 652 600 652
5 4.27 1345 9.87 762 762 900 762 600 762
6 3.08 1425 13.80 756 756 900 756 1800 759
7 13.29 1872 18.23 1017 1017 900 1017 1800 1017

The results are shown in Table 2. The table compares the results of our approach with
best results of two previous approaches. The Iterated Local Search (ILS) proposed by Saviniec
et al. [2013] and the best version (F8) of the Fix-and-Optimize heuristics proposed by Dorneles
et al. [2014]. The best solutions are shown in bold font. We observe that our PRF heuristic is very
fast to construct initial solutions. The constructed solutions have an average optimality gap of 41.45
%. The PMILS algorithm found similar results in quality of solutions compared with the two other
approaches. However, PMILS outperforms the previous approaches in computational time. It finds
the same quality of solutions much faster than the previous approaches2.

Results in the HSTP-B
This is the problem described in Section 2. In this problem, we used the 34 instances

proposed in Saviniec et al. [2015]. The instances are described in Table 3. The objective function
weighting parameters were set to α7 = 1, α8 = 3, α9 = 9.

In this experiment, our approach is compared with the solver GOAL [Fonseca et al.,
2014], that is the winner of the Third International Timetabling Competition [Post et al., 2016]
devoted to high school timetabling problems, ITC20113. We compare our approach with the latest
version of GOAL [Fonseca et al., 2016], which employs a three-phase approach. The first phase
constructs an initial solution via the KHE software libraries [Kingston, 2015]. The second phase

1Available at the website “http://labic.ic.uff.br/Instance/index.php?dir= SchoolTimetabling”
2Our approach was run in a machine with inferior hardware resources than the machines described by Saviniec et al.

[2013] and Dorneles et al. [2014]. We used a Notebook with CPU Intel Core i3 (2.3 GHz) and 2 GB of RAM, running
Linux Mint 17.1.

3https://www.utwente.nl/ctit/hstt/
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employs a parallel Variable Neighborhood Search (PVNS) metaheuristic and the third phase re-
fines the output of PVNS with Fix-and-Optimize MIP heuristics. The experiment was made on a
server with 2 CPU Intel Xeon E5-2680v2 (2.8 GHz) and 128 GB of RAM, running Red Hat En-
terprise Linux 6.5. We set the algorithm PMILS with N = 19 intensifiers and the parallel VNS of
GOAL with 20 threads. The additional parameters of GOAL were set with recommended values
(alg-timelimit = 62, form-timelimit = 62, initial-soln = KHE, algorithm = SVNS, formulation =
FIXOPT, formfixopt-nresources = 5 and formfixopt-optinarow = 5).

The results are shown in Table 4. The best solutions are shown in bold font. We observe
that our approach outperforms GOAL in quality of solutions for most of the tested instances. The
algorithm PMILS only performed worse than GOAL for instance 8. This instance has a large
number of teachers’ unavailable periods, which considerably reduces the feasible region and it is
expected that the Fix-and-Optimize MIP heuristics implemented in GOAL perform better than our
local search. The columns LB and UB of Table 4 show the results of CPLEX after a time-limit
of 3 hours. The CPLEX was initialized with a solution found by running the PMILS algorithm
during 625 seconds. The CPLEX was able to improve the solution of PMILS only for the restricted
instance 8. The last column of Table 4 presents the best gaps found for these instances.

In this experiment, the PRF heuristic was also able to construct initial feasible solutions
very fast. The constructed solutions have an average optimality gap of 37.89 %.

Table 3: Features of the instances proposed by Saviniec et al. [2015].
ID Instance |C| |T | |D| |H|

∑
r∈R θ̃r

∑
r∈R π̃r

1 CL-CEASD-2008-V-A 12 27 5 5 300 132
2 CL-CEASD-2008-V-B 12 27 5 5 300 132
3 CL-CECL-2011-M-A 13 31 5 5 325 144
4 CL-CECL-2011-M-B 13 31 5 5 325 143
5 CL-CECL-2011-N-A 9 28 5 5 225 107
6 CL-CECL-2011-V-A 14 29 5 5 350 164
7 CM-CECM-2011-M 20 51 5 5 500 234
8 CM-CECM-2011-N 8 30 5 5 200 96
9 CM-CECM-2011-V 13 34 5 5 325 142

10 CM-CEDB-2010-N 5 17 5 5 125 60
11 CM-CEUP-2008-V 16 35 5 5 400 192
12 CM-CEUP-2011-M 16 38 5 5 400 192
13 CM-CEUP-2011-N 3 15 5 5 75 36
14 CM-CEUP-2011-V 16 34 5 5 400 169
15 FA-EEF-2011-M 4 12 5 5 100 42
16 JNS-CEDPII-2011-M 8 19 5 5 200 85
17 JNS-CEDPII-2011-V 7 21 5 5 175 73
18 JNS-CEJXXIII-2011-M 5 18 5 5 125 60
19 JNS-CEJXXIII-2011-N 4 15 5 5 100 48
20 JNS-CEJXXIII-2011-V 5 18 5 5 125 60
21 MGA-CEDC-2011-M 19 37 5 5 475 210
22 MGA-CEDC-2011-V 12 31 5 5 300 131
23 MGA-CEGV-2011-M 31 62 5 5 775 352
24 MGA-CEGV-2011-V 32 75 5 5 800 357
25 MGA-CEJXXIII-2010-V 16 35 5 5 400 192
26 MGA-CEVB-2011-M 10 21 5 5 250 108
27 MGA-CEVB-2011-V 9 20 5 5 225 97
28 NE-CESVP-2011-M-A 18 45 5 5 450 212
29 NE-CESVP-2011-M-B 18 44 5 5 450 212
30 NE-CESVP-2011-M-C 18 45 5 5 450 211
31 NE-CESVP-2011-M-D 18 45 5 5 450 211
32 NE-CESVP-2011-V-A 16 44 5 5 400 183
33 NE-CESVP-2011-V-B 16 43 5 5 400 184
34 NE-CESVP-2011-V-C 16 43 5 5 400 182
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Table 4: Comparison between our approach and the solver GOAL [Fonseca et al., 2016] in 25 runs of 625
seconds.

PRF PMILS GOAL CPLEX (3 h)
ID Time (s) Median Median Best Median Best LB UB Gap (%)

1 1.74 1158 710 703 730 716 682 – 2.99
2 1.94 1146 713 706 730 716 682 – 3.40
3 1.54 1514 751 746 770 762 726 – 2.68
4 1.19 1583 743 738 768 749 725 – 1.76
5 0.65 1253 631 631 648 642 629 – 0.32
6 1.84 1521 777 773 814 800 771 – 0.26
7 6.34 1583 1256 1245 1312 1297 1203 – 3.37
8 1.53 805 697 678 682 676 675 675 0.00
9 2.53 1002 822 816 838 829 804 – 1.47

10 0.29 688 298 298 300 298 298 – 0.00
11 3.64 1391 999 978 1052 1024 953 – 2.56
12 5.39 1184 1037 1028 1048 1034 1014 – 1.36
13 0.36 281 273 273 273 273 273 – 0.00
14 4.64 1098 950 943 971 949 929 – 1.48
15 Infeasible
16 0.61 870 483 481 498 490 475 – 1.25
17 0.4 911 461 458 468 462 455 – 0.66
18 0.31 762 319 319 324 319 316 – 0.94
19 0.21 591 254 254 254 254 251 – 1.18
20 0.3 784 325 325 328 325 312 – 4.00
21 7.65 1266 1067 1061 1107 1091 1044 – 1.60
22 Infeasible
23 11.8 2519 1893 1865 2013 1971 1793 – 3.86
24 11.5 2665 2065 2047 2171 2128 1965 – 4.01
25 4.02 1333 940 924 987 966 909 – 1.62
26 1.34 860 575 572 603 584 570 – 0.35
27 1.27 675 554 552 566 560 551 – 0.18
28 2.63 2009 1153 1138 1183 1167 1103 – 3.08
29 2.66 1958 1145 1133 1187 1168 1094 – 3.44
30 2.82 2041 1166 1153 1203 1175 1112 – 3.56
31 3.11 1853 1164 1147 1195 1181 1111 – 3.14
32 1.97 1928 1043 1033 1069 1063 998 – 3.39
33 2.12 1901 1050 1038 1078 1060 997 – 3.95
34 2.32 1811 1041 1029 1070 1056 979 – 4.86

Conclusions
In this paper, we proposed an approach with constructive and improvement phases to

solve high school timetabling problems. The approach applies a Proximity Relax-and-Fix heuristic
to construct an initial feasible solution that is further improved with a Parallel Multi-Start Iterated
Local Search. Our constructive heuristic solves a series of relaxed sub-problems to achieve a com-
pletely feasible solution. When infeasible partitions are chosen, the heuristic is able to step over
by solving a proximity problem to find another feasible partition. Our improvement heuristic is de-
signed to exploit the parallelism of multi-core machines. The algorithm is a system of cooperative
threads that exploit diversification and intensification to achieve high-quality solutions during the
search. The proposed approach showed to find good quality solutions and outperform the state-
of-the-art algorithms for two variants of the problem at hand. These results show that parallel
cooperative multi-start approaches, such the one proposed here, are promising tools for handling
combinatorial problems such as the HSTP. Also, these approaches are scalable algorithms that can
exploit the power of machines with a large number of cores.
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