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ABSTRACT
In this article, we present an exact method to solve RCPSP/Max and its partic-

ular cases like RCPSP. Our method approach the problem by a relaxation of RCPCP/Max
to the satisfiability Problem (SAT) to find feasible solutions and prove optimality. We also
consider a workload approach to reduce the domain of decision variables and, as a conse-
quence, reduce the SAT relaxations. Our method was tested with RCPSP/Max benchmark
instances with 10 to 500 activities and 5 resources and with RCPSP benchmark instances
with 30 to 120 activities and 4 resources. In total were considered 4470 instances and we
solved 126 of previously unsolved instances in up to 600s. Our method also has better time
solving relation than the best known methods.

KEYWORDS. Project scheduling. Resource constraints. Satisfiability prob-
lem.
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1. Introduction

Optimizing project planning is important in every knowledge area since it can
avoid waste of time and resources, specially in great projects like rocket launch, building
hydro-electrical plants or oil and gas platforms [Pinedo, 2004]. The resource constrained
project scheduling problem (RCPSP) is a well-known model for such optimization that is
defined as follows. Let V = {0, 1, . . . , N,N + 1} be the set of activities to be scheduled
using a set R = {1, . . . ,m} of resources during a time horizon [0, T ). Each activity j ∈ V
has an execution time pj and uses a specific amount rij of resource i at every instant of
its processing time. Resource i ∈ R has Ri units available during all the time horizon.
The schedule should also respect activity precedences, which are represented by a directed
graph G = (V,A). For each (j, l) ∈ A, we use djl to denote the time lag from activity j to
l. In this case, l must start at least djl time units after j starts and j has to start at most
−djl units of time after l starts. For the classic RCPSP, only strict precedences are allowed,
ie, if (j, l) ∈ A then djl = pj . For the RCPSP/max, −∞ ≤ djl ≤ ∞ and non-positive
cycles are allowed in A. Activities 0 and N + 1 represent the beginning and the end of the
project, having null execution times and null use of resources. Every activity with no other
predecessor will succeed 0, and every activity with no other successor will precede N + 1.
In this study, the objective is to find the minimum completion time for the project, also
known as makespan and also defined as the finish time of activity N + 1.

RCPSP and its variations are NP-hard as it generalizes shop problems, like open
shop or job shop [Blazewicz et al., 1983]. Bartusch et al. [1988] show that even proving an
instance is feasible is NP-hard for RCPSP/Max variation.

In this study, we present an exact method to solve RCPSP/Max and its particular
cases like RCPSP. Our method approach the problem by a relaxation of RCPCP/Max
to the Satisfiability Problem (SAT) to find feasible solutions and prove optimality. We
also consider Azevedo e Pessoa [2012] workload approach to reduce the domain of decision
variables and, as a consequence, reduce the SAT relaxations.

Our method was tested with the ProGen/max benchmark instances for RCPSP/Max
with 10 to 500 activities and 5 resources. Those instances were developed by Schwindt [1995]
and are public available in PSP, a public benchmark repository. Before this study, 107 of
these instances were open, i.e., they had no known or proven optimal solution. We could
find and prove optimality for 55 of these instances with the time limit of 600s.

We also tested it on benchmark instances for RCPSP with 30 to 120 activities and
4 resources. We could close 71 of the 495 previously open instances of this benchmarks.

This study is divided as follows: in section 2 we present a literature review on
exact methods to solve resource constrained scheduling and on SAT solving techniques. The
exact method proposed in this study is presented in 3 and the results of our computational
experiment are presented in 4. Last our conclusions and future work are presented in 5.

2. Theoretical Framework / Literature Review

In this section, we present a literature review on exact methods to solve project
scheduling problems and present some base studies to our method. Next we present a
theoretical framework on Satisfiability problem and solving algorithm.

Pinedo [2004] presents a Mixed Integer Programming (MIP) formulation for the
RCPSP. de Lemos evaluates the use of three MIP formulations and the impacts of adding
two cutting planes types during the solution procedure.

Horbach [2010] presents a SAT formulation for the RCPSP with a custom process
to include resource constraint clauses whenever they are violated by a partial allocation.

Due to the complexity of the problem, calculate lower bounds on the makespan can
be useful in the decision-making process regarding the project [Azevedo e Pessoa, 2012].
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A workload relaxation procedure to reduce the execution intervals and calculate a lower
bound on the makespan was presented in Azevedo e Pessoa [2012].

According to Schutt et al. [2013], the best exact method known to solve the RCPSP
was presented in Schutt et al. [2011] that considers Constraint Programming (CP) tech-
niques. That article considers Lazy Clause Generation (LCG) to represent the domain
of decision variables and included disjunction clauses for pairs of activities that can not
be executed in parallel. A custom propagator called cumulative, deeply studied in Schutt
et al. [2009], was used to represent resource constraints. Schutt et al. [2013] generalizes
that method to the RCPSP/Max variation. As described in those works, they used a CP
platform that includes a SAT Solver which can learn about the problem during its resolu-
tion, reducing search space. No better results were found in the literature for RCPSP and
RCPSP/Max benchmark instances.

As shown above, there are different approaches to solve RCPSP and RCPSP/Max.
In this article, we developed a SAT relaxation to find and prove the optimality of solu-
tions. In 2.1, we discuss SAT characteristics and resolution methods. The RCPSP and
RCPSP/Max base methods for our approach are respectively presented in 2.2 and 2.3.

2.1. Satisfiability Problem - SAT
The SAT is composed of binary variables and a propositional formula. This formula

is in the Conjunctive Normal Form (CNF) if it is a set (”and”,”∧”) of clauses, which are
disjunctions (”or”, ”∨”) of literals. A literal can be a variable or its negation (”not”, ”¬”). A
formula is satisfiable if it is possible to find an assignment that makes the formula evaluate
true.

The basic algorithm to solve SAT is known as Davis-Putnam-Logemann-Loveland
(DPLL) and was proposed by Davis e Putnam [1960]. Marques-Silva e Sakallah [1999]
presented the Conflict-Driven Clause Learning (CDCL) which was a major improvement
on SAT solving methods. Once a conflict is found, it is analyzed to identify its causes and
a new clause is created. In this case, backtracking is performed to the level where the new
clause will be considered to propagate fixations, reducing the search space for solutions.

2.2. RCPSP reduction to SAT
In this section, we present the RCPSP relaxation to SAT presented by Horbach

[2010]. This procedure requires to calculate a valid execution interval ([ESj , LFj)) for each
activity (j ∈ V ), that can only start on its early-start time (ESj) or later and has to be
completely executed before its late-finish time (LFj). Once those intervals are calculated,
Horbach [2010] considers two sets of variables sjt and ujt. Variable sjt is true if j ∈ V
starts at instant t ∈ {ESj , . . . , LSj} and ujt is true if j ∈ V is being executed at instant
t ∈ {ESj , . . . , (LFj − 1)}. Horbach [2010] formulation is presented below:

¬sjt1 ∨ ujt2
t2 ∈ {t1, . . . , t1 + pj − 1} ;
t1 ∈ {ESj , . . . , LSj} ;∀j ∈ V (1)

¬sjt1 ∨
∨

t2∈{max{t1+pj ;ESl},...,LSl}

slt2 ∀ (j, l) ∈ A; t1 ∈ {ESj , . . . , LSj} (2)

∨
t∈{ESj ,...,LSj}

sjt ∀j ∈ V (3)

∨
j∈C
¬ujt t ∈ {0, . . . , T − 1} ;C ∈ C (4)

Clauses defined by (1) guarantee the correct relation between the start-time vari-
ables and processing variables. The precedence relations between activities are included by
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clauses (2). Clauses (3) define that all activities have to start. The resource constraints are
defined by (4).

The set C ⊂ V considered in (4) is such that
∑

j∈C rij > Ri for a resource i ∈ R

and C is the set of all sets with the described characteristic. As C ⊂ 2V , Horbach [2010]
does not considers a promising approach to include all resource constraint clauses. Instead,
those clauses are included on demand in a custom procedure similar to cut planes generation
for Mixed Integer Programing.

2.3. Exact solving methods for RCPSP/Max

In this section we present two exact approaches to solve RCPSP/Max: the workload-
based lower bound introduced by Azevedo e Pessoa [2012] and the Constraint Programming
(CP) approach by Schutt et al. [2013].

2.3.1. Workload-based lower bound

Azevedo e Pessoa [2012] present a workload-based procedure to update activities
execution intervals. This procedure keeps an execution interval ([ESj , LFj)) for each ac-
tivity (j ∈ V ), that can only start on its early-start time (ESj) or later and has to be
completely executed before its late-finish time (LFj). For activity N + 1, that represents
the project endpoint, the ES represents a lower bound and LF represents an upper bound
on the optimal makespan.

The procedure initializes the execution interval of j ∈ V as [ESj , LFj) = [0, T ),
where T is a valid upper bound on the makespan. Next, the intervals are checked and
updated in order to guarantee precedence relations. This can be done with a procedure
similar to the Critical Path Method (CPM) [Kelley Jr, 1961], i.e, for (j, l) ∈ A if the
constraint ESj+djl ≤ ESl is violated then ESl is updated to ESj+djl and if the constraint
LFl − djl ≥ LFj is violated then LFj is updated to LFl − djl. This procedure is repeated
until no constraint is violated or until LFj −ESj < pj for a j ∈ V which means that there
is no solution with makespan less than or equal to T . Then it considers a workload-based
relaxation of RCPSP/Max to check if all workload that must be scheduled before (or after)
j ∈ V starts (or finishes) fits in [0, ESj) (or in [LFj , T )). If that workload does not fit
in the interval, than ESj is improved (or LFj is reduced) by one unit and the precedence
relations are considered to propagate this update to other activities.

To check if all workload that must be scheduled in [0, ESj) (or in [LFj , T )), first
Azevedo e Pessoa [2012] temporarily updates all activities execution intervals regarding j
starts at ESj (or finishes at LFj). Next, they calculate the part of each activity that must
be scheduled in the test interval under this temporary update. For each resource of the
RCPSP/Max, the workload of each activity is scheduled by a greedy method considering
the temporary intervals and the workforce available, but not precedence relations.

2.3.2. Constraint Programming formulation

Schutt et al. [2013] present a CP formulation for the RCPSP/Max that considers
cumulative propagators, Lazy Clause Generations (LCG) and disjunctive clauses.

Schutt et al. [2009] study the use of cumulative propagator and describe it as
equivalent to resource constraints. This procedure keeps a time table with the cumulative
use of resources for each instant of time regarding the execution intervals of all activities.
Thus, for a partial solution if it is not possible for an unfixed activity j to be executed in
a specific time t due the cumulative use of a resource then the propagator will remove this
instant from the domain of the execution interval of j.

According to Schutt et al. [2013], when one include a LCG on an integer variable
x whose domain is {l, . . . , u} it implicitly creates two sets of binary variables [x = t] and
[x ≤ t] for each t ∈ {l, . . . , u}. It also will include on demand the required constraints to
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guarantee that if x = t then [x = t] is true and if x ≤ t then [x ≤ t] is be true. Schutt et al.
[2013] applies LCG in the integer variables Sj that define the start time of activities.

The disjunctive clauses are included for each pair of activities (j, l) that can not
be executed in parallel due to resource consumption in such a way that or j precedes l or l
precedes j. Schutt et al. [2013] include this redundant constraint believing it can help the
solver to quicker determine or propagate information about start time variables.

3. Proposed method

In this section, we present the method proposed in this article to solve the RCPSP/Max
and its particular cases. This method addresses the problem in two ways: destructive and
constructive.

In the destructive approach, we reduce the feasibility RCPSP/Max to SAT, con-
sidering a hypothetical upper bound (T ′). If the reduction is feasible/satisfiable and a
solution is found, then T ′ (or the solution’s makespan) will be an upper bound for the op-
timal makespan. On the other hand, if the reduction is infeasible/unsatisfiable, we proved
that there is no solution for RCPSP/Max with makespan less than or equal to T ′, in other
words T ′ + 1 will be a lower bound for the optimal makespan. To find the optimal solution
and prove its optimality, we use a procedure similar to binary search on the value T ′.

The constructive part of our method considers the workload-based procedure pro-
posed in Azevedo e Pessoa [2012] to update the execution intervals of all activities and
the lower bound on the makespan. When we perform this procedure and update execution
intervals, we can create smaller size SAT relaxations that should be faster to generate and
to solve. By updating the lower bound, we reduce the search interval on the value of T ′.

Before performing both parts described above, we pre-process the input data in
order to check instances feasibility and to improve precedence relations.

In 3.1, we present the pre-processing method here proposed. Section 3.2 presents
our RCPSP/Max reduction to SAT. The workload-based procedure considered to update
activities execution interval and its integration to SAT reduction are presented in 3.3.

3.1. Pre-processing

The proposed pre-processing is divided in two parts and its main goals are to check
instance feasibility and improve the precedence relations graph, which may lead to a better
trivial lower bound and better interval update propagations.

In the first part, we check resource infeasibility, i.e, if there is rij > Ri for any
resource i ∈ R and for any activity j ∈ V . In this case, j can not be scheduled since it
requires more units of resource i than available on any time, then instance is infeasible.

In the second part, we check for positive cycles in the precedence graph. We
consider the indirect precedence between activities, that is, if activity j precedes l which
precedes k, then l and k are indirect successors of j. Formally, let the directed graph
G′ = (V,A′) represents the indirect precedences. For each, (j, l) ∈ A′ we use d′jl to denote
the time lag from activity j to l. G′ is such that A′ ⊃ A and if (j, l) ∈ A′ then (j, k) ∈ A′

with related d′jk ≥ d′jl + d′lk. If d′jk + d′kl > 0 then there is a positive cycle in A.

Note that, even if no resource infeasibility and no positive cycle were found, the
instance may still be infeasible when we consider resources and precedences together. For
example, if d′jl + d′lj = 0 for (j, l) , (l, j) ∈ A′ then j and l must start at the same time.
Also consider that we have rji < Ri, rli < Ri and Ri < rji + rli for a resource i, which
implies that j and l can not be scheduled in parallel. Considering both situations, as it is
not possible for a pair of activities start at the same time and not be scheduled in parallel,
then the problem is infeasible.

In this study, we propose to include some resource information in the precedence
network. When the precedence relation between two activities allows them to be scheduled
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in parallel, we check if the resource constraints also allow it. If not, we update the indirect
precedence and add a new precedence. Formally, if (j, l) ∈ A′ with −pl < d′jl < pj and
there is i such that Ri < rji + rli, then we can update d′jl to pj and add a new direct
precedence from j to l with djl = pj . Note that even for feasible instances, the new direct
precedence added is useful since it benefits the propagations using precedence relations and
may improve the lower bound on the makespan.

In the example described above, the proposed procedure would update d′jl to pj
and d′lj to pl, leading to a positive cycle in G′ and proving the infeasibility.

3.2. SAT formulation for RCPSP/Max

In this section, we present SAT formulation for the feasibility RCPSP/Max. Our
formulation is based on the SAT formulation of Horbach [2010] and the CP formulation
from Schutt et al. [2013], but we also introduced some new ideas, we beleave can benefit
SAT solver.

In this formulation, we consider the sets of binary variables [xjt] and [sj ≤ t].
[sj ≤ t] is true if activity j ∈ V starts at instant t ∈ [ESj , LFj) and [xjt] is true if activity
j ∈ V is being executed at instant t ∈ [ESj , LFj). Note that the exact start time of activity
j can be computed by expression [sj ≤ t] ∧ ¬ [sj ≤ (t− 1)] after solve the sat relaxation.

¬ [sj ≤ t] ∨ [sj ≤ (t+ 1)] ∀t;ESj ≤ t < LSj (5)

[sj ≤ LSj ] ∀j ∈ V (6)

¬ [sj ≤ t] ∨ [sk ≤ (t− dkj)]
∀j ∈ V ;∀ (k, j) ∈ A;
∀t|ESj ≤ t ≤ LSj ∧ ESk ≤ (t− dkj) ≤ LSk

(7)

¬ [sj ≤ t1] ∨ [sj ≤ (t1 − 1)] ∨ [xjt2 ]
∀j ∈ V ;ESj < t1 ≤ LSj ;
t1 ≤ t2 ≤ (t1 + pj − 1)

(8)

¬ [sj ≤ t1] ∨ [xjt2 ]
∀j ∈ V ; t1 = ESj ;
t1 ≤ t2 ≤ (t1 + pj − 1)

(9)

¬ [xjt] ∨ [sj ≤ t] ∀j ∈ V ;ESj ≤ t ≤ LSj (10)

¬ [xjt] ∨ ¬ [sj ≤ (t− pj)] ∀j ∈ V ;ESj ≤ t ≤ LSj (11)∨
j∈λki

¬ [xjt] ∀t;∀k;∀λkt (12)

The set of clauses defined by (5) guarantees the relation between variables [sj ≤ t]
and their interpretation. (6) ensures all activities are executed. The precedence relations
are defined by (7). Clauses (8), (9), (10) and (11) insure the relation between [sj ≤ t]
and [xjt] so that [xjt1 ] is true if, and only if, a variable [sj ≤ t2] is also true for t2 ∈
[(t1 − pj + 1) , (t1 + pj − 1)]. Resource constraints are defined by (12).

In (12), λti ⊆ Vt represents a set of activities that can not be executed all at the
same time t ∈ [0, T ′[, that is, at least one activity j ∈ λti can not be executed at time t.
In the worst case, we could have 2N subsets with this characteristics, however, unnecessary
clauses would be generated. Note that if λt ⊂ λ

′
t then λ

′
t would generate a clause that is

a perfect superset of the clause generated by λt, which means that the λ
′
t is not needed.

In other words, only minimal subsets of activities that can not be executed in parallel are
considered.

Even considering only minimal λtj ⊂ Vt, the quantity of clauses (12) could be very
large and even identify the minimal λtj could be too time consuming. For this reason,
in this article we proposed to include only clauses related to λti such that 2 ≤ |λti| ≤ 3.
The remaining clauses may be included on demand in two different procedures: inside the
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SAT Solver, as in Horbach [2010] or after the resolution of the SAT, which requires a new
solution round. Both ways were implemented and tested and are compared in this work.

To create the feasibility RCPSP/Max relaxation to SAT, one must define a hypo-
thetical upper bound (T ′) on the makesan to test and then calculate the execution intervals
[ESj , LFj) for all j ∈ V . If the SAT relaxation is satisfiable, then we found a feasible so-
lution for the RCPSP/Max and T ′ (or the makespan of the solution found) is an upper
bound. Other wise, we proved that there is no feasible solution for RCPSP/Max with
makespan equal to or less than T ′, then T ′ + 1 is a new lower bound. To find solutions and
prove optimality, in this article we use an exponential search, a procedure similar to binary
search, on the value of T ′.

In 3.3, we present a workload-based method to update execution intervals of each
activity and, as consequence, we may obtain a better lower bound. This procedure con-
tributes reducing the size of SAT relaxations, as the quantity of variables and clauses may
reduce, and the search space for the optimal solution on the value of T ′.

3.3. Execution intervals improvement by workload-based relaxation
In this section, we present the way we consider the workload-based procedure to

update activities execution intervals introduced by Azevedo e Pessoa [2012] and how we
integrated it to SAT. In that work, this procedure was used to calculate lower bounds on
the makespan. In this article, We use this procedure in order to generate a smaller size
RCPSP/Max reduction to SAT.

That procedure requires a valid upper bound to initialize the execution intervals.
In this article we consider T =

∑
j∈V

(
max(j,l)∈A {djl, pj}

)
.

While developing this study, we noticed that only the SAT could solve a great num-
ber of RCPSP/Max and RCPSP benchmark instances in a few seconds but the workload-
based interval update could help solve some harder instances. In order to try to obtain the
best of both approaches, we decided to start by solving SAT relaxation. If after 3.5s solving
a single SAT relaxation it is not solved yet (satisfiable with a solution or unsatisfiable), we
interrupt the solver and start the interval update procedure.

In the first time the interval update is required, we consider the current upper
bound on the makespan to initialize the intervals. The improved intervals under this con-
sideration can be held to any T ′ ≤ T under test, so we avoid repeating some updates.
After that we regard the improved execution intervals and the current T ′ in test to fur-
ther improve the intervals, which will only be valid under this consideration. The updated
intervals are transfered to SAT relaxation by fixing the value of variables [sj ≤ t]. Next
SAT relaxations will already have fewer variables and clauses since we already have valid
improved intervals, but we can further improve intervals by updating them for the new T ′

under test. If after an interval update a T ′ under test is feasible a upper bound on the
makespan, the improved intervals is held for the next tests.

Note that if a variable [sj ≤ t] is fixed as true by the SAT solver before the in-
terruption we can update LFj to t and if this variable is fixed to false we can update
ESj to t+ 1. This way we can also transfer some information from SAT relaxation to the
workload-based interval updates.

4. Experiments
Our procedure were implemented in C++ and compiled by GCC for Linux. In

order to solve SAT relaxations we incorporated MiniSAT 2.2.0 [Eén e Sörensson, 2004] to
our procedure. All tests were performed on a computer with Core i7 processor and 12 GB
RAM and Ubunto 14.04.3 LTS Operating System. We considered the time limit of 600s,
the same as Schutt et al. [2013].

We have considered a total of 4470 benchmark instances, all publicly available
in PSP. For RCPSP/Max we have considered 2430 instances of groups UBO10, UBO20,
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UBO50, UBO100, UBO200, UBO500, j10, j20, j30, TestSetC and TestSetD, respectively
with 10, 20, 50, 100, 200, 500, 10, 20, 30, 100 e 100 activities. For the RCPSP, we have
considered 2040 of groups j30, j60, j90 e j120, respectively with 30, 60, 90 and 120 activities.

Besides generalized precedences, there is a major difference between RCPSP and
RCPSP/Max benchmark instances: in general, RCPSP instances have more resources slack,
which allow more than two activities to be processed in parallel. For RCPSP/Max bench-
mark instances, resources are tighter.

We have implemented four configurations of our method to allow a better under-
standing on the benefits of each mechanism. All configurations consider the pre-process
here presented.

• Conf A: runs only the SAT relaxation and resource clauses related to |λti| > 3 are
added on demand after solving;

• Conf B : runs only the SAT relaxation and resource clauses related to |λti| > 3 are
added inside the SAT solver by a custom procedure;

• Conf C : runs SAT relaxation and workload-based interval updates and resource
clauses related to |λti| > 3 are added on demand after solving;

• Conf D : runs SAT relaxation and workload-based interval updates and resource
clauses related to |λti| > 3 are added inside the SAT solver by a custom procedure;

First, the four configurations of our method are compared among themselves and
then to with the best known results. Since there are important differences between RCPSP
and RCPSP/Max benchmark instances, we present results and comments apart.

4.1. Configuration comparison
For RCPSP/Max benchmark instances, all configurations of our method proved

infeasibility for the 362 instances known to be infeasible. For 360 of those, infeasibility was
proved by the pre-processing proposed in this article and for the other 2 instances SAT
relaxation proved infeasibility in less than 40s. No new infeasibility was found.

Tables 1 and 2 compare the number of instances solved before the time limit of
600s, respectively for RCPSP/Max and for RCPSP benchmark instances. First two columns
presents the group of instances and the total number benchmark instances in the group.
Following columns present results for the four configurations and the results considering
all configurations. Solved presents the number of instances whose infeasibility were proven
and feasible instances whose optimal solution was found and proved and Open presents the
number of not solved.

Table 1: Configuration comparison

for RCPSP/Max instances

Table 2: Configuration comparison for

RCPSP instances
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In Table 1, it can be seen that only 52 RCPSP/Max instances were not solved
by any of the presented configurations in 600s. None of the settings dominates the com-
parative, ie, no configuration has the best results for all groups under comparison. Only
Conf D solves all instances in j30, but for UBO500 it can solve much less instances. For
groups with smaller instances (j10, j20, UBO10 and UBO20 ), all of them were solved by
all configurations. For greater instances (UBO200 and UBO500 ), Conf A had a better
performance. This result can also be observed for TestSetD and UBO100.

In Table 2, it can be seen that 433 RCPSP instances have not been resolved in
up to 600s and that 312 of them are from group j120. Conf D dominates the comparative,
i.e., it has the best performance for all groups and in general. This configuration was able
to solve all instances also resolved by the other settings. The worst result was obtained by
Conf C.

In order to compare the solving time for the different configurations of our methods,
we present graphics by groups of instances with the number of instances solved by solving
time. The x-axis presents the solving time and the y-axis presents the number of instances
of the group that were solved with solving time less than or equal to that time. The
scales of the graphs were adjusted according to the situation of each group to allow better
comparative visualization. We consider group UBO200 for RCPSP/Max and group j120
for RCPSP. Other groups have a similar behavior.
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Generally considering all RCPSP/Max groups of instances, the four configurations
solve large number of instances in a few instants, but from a certain point, there is greater
dispersion for the time required to solve new instances. The four configurations have very
similar curves, but the curve of Conf B is is below the other. Besides that, the majority of
instances on groups j10, j20, UBO10 and UBO20 are solved in less than a second by all
four configurations.

In the chart for group j120, one can observe that Conf D and Conf B present
better performance until about 10s. Before 10s, the curve of Conf D is above the curve of
Conf B. From this point forward, the curves for all configurations get closer. We have a
similar behavior for RCPSP group j90, but curves get closer after 0.5s. At the beginning
of the curves for RCPSP group j60, we have a behavior similar the observed for j120.
However, after 0.05s and before 50s, Conf A and Conf C have better performance. After
50s, all curves get closer. Considering the four groups of RCPSP benchmark instances, all
configurations are able to solve a large number of instances in a few seconds. For RCPSP
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group j30, all instances are resolved in just over 10s.

4.2. Literature comparison
In this section, we compare the results of the method here proposed to the literature

best know results. As far as we are concerned, the best known results for RCPSP benchmark
instances were found in Schutt et al. [2011] and for RCPSP/Max benchmark instances were
found in Schutt et al. [2013]. For RCPSP/Max benchmark instances, the individual solving
time on 6 configurations are available at http://people.eng.unimelb.edu.au/pstuckey/
rcpsp/rcpspmax_all.html, which allowed us to compare the solving times by instances on
the best configurations. On the other hand, Schutt et al. [2013] have not considered group
UBO500, so we also consider PSP results. For RCPSP benchmark instances, we considered
only PSP results, since no other public data with individual result was found.

Table 3 compares the number of RCPSP/Max instances not solved before the
time limit of 600s by our method, by Schutt et al. [2013] configurations mslf/sat/g and
mslf/sat/g/r and by other results available at PSP.

Table 3: Literature comparison for

RCPSP/Max not solved instances
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One can observe in Table 3 that the settings of Schutt et al. [2013] did not obtain
better results than the configurations of the method here proposed for any of the groups.
Our method solved all instances solved by Schutt et al. [2013]. For group UBO500, all of
our configurations solved all instances already solved in the Literature and, at least, 31
more instances.

In order to compare the solving time of the configurations of our methods and
the method introduced by Schutt et al. [2013], we present a chart for group UBO200 of
RCPSP/Max benchmark instances. We have chosen Conf A and Conf D of proposed
method to compare to the literature results. Conf A is the simpler configuration and had
better solving time for UBO100 and UBO200. Conf D was the only configuration to solve
all j30 instances and had also solved more instances of RCPSP. Generally considering all
groups of instances, our configurations solve large number of instances in a few instants, as
their curves are the majority of time above curves of Schutt et al. [2013] methods.

Table 4 presents our results for the previously unsolved RCPSP/Max benchmark
instances, considering results from Schutt et al. [2013] and PSP. The first three columns
show the group of instances, total quantity of instances and the unsolved instances in the
group. The next five columns present the number of previously unsolved instances that
were solved by our four configurations and by at least one of them.

This results show that all four configurations were able to reduce the total of
unsolved instances. Considering all configurations, we solved 51,4% of these instances and
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Table 4: Literature comparison for open RCPSP/Max instances

even the configuration that less solves instances has solved 33,6% of them. For group j30,
we could close all instances with Conf D.

In Table 5, we can compare the results of our four configurations to the best known
literature results available at PSP for RCPSP benchmark instances.

Table 5: Literature comparison for

RCPSP unsolved instances
Table 6: Literature comparison for previ-

ously unsolved RCPSP instances

All of our configurations solved 62 more instances than previously solved in the
literature regarding all RCPSP benchmark groups, 35 more instances considering j60 and
28 more instances for j90. However for j120 the literature known results have one more
solved instance than solved in this study. Regarding previously solved RCPSP benchmark
instances, our method could not find and prove optimality of solutions for 9 instances up
until 600s, 3 instances from group j90 and 6 from j120.

Table 6 presents our results for the previously unsolved RCPSP benchmark in-
stances, considering results available at PSP. Note that our method solved 71 those unsolved
instances, which represents 14.3% of those instances. Group j30 had no open instances. For
all other groups, we reduced the number of unsolved instances with all four configurations.

5. Conclusion and Future Work

The results presented in this article show that the method here proposed can
solve a large number of RCPSP and RCPSP/Max benchmark instances in few instants.
Regarding the total number of instances solved and the solving time relation, our method
had better results than best known methods. For RCPSP/Max instances, we could solve all
previously solved instances and also 55 other, which represents 51% of unsolved instances.
In case of RCPSP, we could not solve 9 previously solved instances, but we solved 71
previously unsolved instances.

Comparing the four configurations of our method, we found better results for
greater RCPSP/Max instances (N ≥ 100) without the custom resource propagator (Conf
A and Conf C ), though Conf D was the only to solve all j30 instances. For RCPSP
instances we can observe a different behavior, as configuration Conf D had the best results,
regarding number of instances solved and solving time relation.

3602



XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

This difference in behavior may not be caused by the particularities of RCPSP, but
by resource slacks. These results indicate that for instances with few slacks it is better not
to interfere inside the SAT solver to add new resource constraint clauses as only few may be
required. On the other hand, for instances with more resource availability not considering
the custom propagator may require a very large number of resolving the SAT relaxation to
add all required resource constraints. In future studies, this relationship could be better
investigated.

Results also indicates that more resource slack instances tend to be more difficult
for SAT-based model here presented, and probably for other exact methods. In the future,
one can check other ways to model the resource constraints in order to avoid this issue.
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