
XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

An Iterated Variable Neighborhood Descent Algorithm applied to the Pickup
and Delivery Problem with Time Windows

Carlo S. Sartori
Universidade Federal do Rio Grande do Sul

Av. Bento Gonçalves, 9500, Porto Alegre - RS - Brazil
cssartori@inf.ufrgs.br

Marcelo W. Friske
Universidade Federal do Rio Grande do Sul

Av. Bento Gonçalves, 9500, Porto Alegre - RS - Brazil
mwfriske@inf.ufrgs.br

Luciana S. Buriol
Universidade Federal do Rio Grande do Sul

Av. Bento Gonçalves, 9500, Porto Alegre - RS - Brazil
buriol@inf.ufrgs.br

ABSTRACT

Pickup and Delivery Problems are variations of the Vehicle Routing Problem, and arise
in many real-world transportation scenarios. This work studies the Pickup and Delivery Problem
with Time Windows, in which goods have to be transported from one location to another, respecting
certain time and vehicle capacity constraints. It aims at minimizing the number of vehicles used, as
well as the operational costs to perform all routes. To solve this problem, an algorithm is proposed
by embedding a Variable Neighborhood Descent method into an Iterated Local Search metaheuris-
tic. Experiments are carried out with standard literature instances, showing that the algorithm is able
to deliver good solutions in competitive time. The student, and first author, developed and wrote the
entire work, as well as interacted with a partner company, as part of his scientific initiation project
and bachelor thesis in computer science, always advised by the other two authors.

KEYWORDS. Vehicle Routing Problem. Pickup and Delivery. Iterated Local Search.

Paper topics: Logistic and Transport (L&T), Metaheuristics (MH)

1. Introduction
Vehicle Routing Problems (VRP) have a wide range of scientific studies due to their use-

fulness in several real-world cases, mainly in the transportation and logistic areas. Many variations
and mathematical models exist in order to comprise all the particularities of each scenario. Among
them, there is the Capacitated Vehicle Routing Problem (CVRP), Vehicle Routing Problem with
Time Windows (VRPTW), and Pickup and Delivery Problem with Time Windows (PDPTW). The
latter is the focus of this research work.

In the studied PDPTW a set of customer requests has to be serviced by a set of vehicles.
Each request is a pair of pickup and delivery locations. Goods have to be transported from the
pickup location to the delivery location. This creates two side constraints: i) precedence constraint,
the pickup has to be visited before the corresponding delivery; and ii) pairing constraint, the pickup
and delivery pair must be visited by the same vehicle. Every location has a time window, stating

3623

XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

the minimum and maximum time a vehicle can start the service. This time window cannot be
violated (hard time window). There is also a service time, or the amount of time a vehicle takes
to complete the service, and a demand, which is the amount of goods the vehicle should pickup or
deliver at the given location. In this problem, there is an one-to-one mapping between pickup and
delivery locations, thus the demand of a pickup is strictly complementary to its delivery.

The fleet of vehicles is homogeneous and each vehicle has a maximum capacity, which
is the amount of goods that can be carried at once. This capacity should never be violated. They
are located at a single common depot, from where their routes start and end. There is a maximum
number of vehicles to be used, which should not be exceeded as well.

The PDPTW is a NP-Hard combinatorial optimization problem, Ropke and Pisinger
[2006], that can be formulated on a graph G = (V,E), where all locations are vertices in V , and
paths are edges in E connecting two locations, with associated cost (distance) and travel time.
Figure 1 presents an example instance and a possible feasible solution using two vehicles.

Figure 1: Example of a PDPTW solution. (a) Locations with demands and time windows [min, max], square
node is the depot and circles are requests locations; (b) a feasible solution example using two vehicles, where
node labels are the exact time a vehicle reaches the node, and arc labels are the load carried by the vehicle.

[1, 2]

a

[1, 3]

b

[4, 7]

−b

[2, 5]

−a

[1, 1]

c

[3, 4]

−c

(a) Locations in a graph

24

6 8

1

3

a

ab

b

c

(b) Feasible Solution

The objective is to first minimize the number of vehicles used, and then the total cost
of all routes. This problem arises in many real-world applications, such as product delivery, dial-
a-ride problems, courier services, airline scheduling, bus routing and logistics and maintenance
support, Nanry and Barnes [2000]. Thus the study of efficient solution methods for this problem
can bring improvements to several services of daily usage.

This work was motivated by a partnership with a software company in Porto Alegre,
uMov.me (http://www.umov.me/), in a research project to solve several real-world routing prob-
lems. The choice of the PDPTW happened because it is a broad problem that generalizes others
(such as CVRP and VRPTW) as shown by Pisinger and Ropke [2007].

2. Related Works
The first work to apply a metaheuristic to solve the multi-vehicle PDPTW was Nanry and

Barnes [2000]. It used a Reactive Tabu Search containing three simple movements: i) moving a re-
quest from one route to another; ii) exchanging a request in one route with a request in another; and
iii) relocating a request to another position within its route. The method was tested with instances
containing up to 50 requests, which were later considered too easy and ended up unused.

Li and Lim [2003] proposed a Tabu-embedded Simulated Annealing approach for solving
the PDPTW. The method uses the same neighborhoods of Nanry and Barnes [2000]. The authors
introduced a new set of benchmark instances, which became the standard set for the PDPTW. The
objective function first minimizes the number of vehicles used, then the total cost of all routes.

Bent and Van Hentenryck [2006] have applied a Two-stage Hybrid Algorithm to solve the
PDPTW, and tested the method with the instances presented by Li and Lim [2003]. The first stage of
the algorithm aims at minimizing the number of vehicles used by means of a Simulated Annealing.
The second stage minimizes the travel distance by means of a Large Neighborhood Search, which
uses a remove and reinsert approach.

3624

XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

Ropke and Pisinger [2006] developed an Adaptive Large Neighborhood Search for a vari-
ation of the PDPTW considered. The method uses a two-stage approach with the same heuristic
in both, adjusting the parameters accordingly. In the first stage vehicle minimization is considered,
while in the second stage the total distance is minimized. The method uses a remove and reinsert
strategy. It was able to improve on more than half of all instances of Li and Lim [2003] data set,
and can be considered the current state-of-the-art method for the PDPTW.

This work is a summary of the the bachelor thesis in computer science of the first author,
Sartori [2016]. Further details can be obtained from the original text.

3. Proposed Algorithm
This work proposes an ILS algorithm, Lourenço et al. [2010], embedding a VND, Mlade-

nović and Hansen [1997], to be used as the local search. The resulting algorithm is an Iterated
Variable Neighborhood Descent (IVND) and it is presented in Algorithm 1. The algorithm has five
parameters, which are explained along this section.

Algorithm 1 IVND
Parameter: I,K, α, ne,N

1: s0 = ModifiedInsertionHeuristic()
2: s∗ = s∗′ = VND(s0,K,N)
3: repeat
4: s′ = Perturbation(s∗′, ne)
5: s∗′ = VND(s′,K,N)
6: s∗′ = AcceptanceCriterion(s∗, s∗′, α)
7: until ib > I
8: return s∗

In line 1, the initial solution s0 is generated, and improved in line 2 by the VND meta-
heuristic. Then, the main loop (lines 3-7) is repeated until the number of iterations without im-
provement, ib, reaches a maximum value I , the stopping criterion. The loop alternates between
perturbations, improvements and acceptance of new solutions. The current solution s∗′ is perturbed
in line 4, creating s′, which is improved in line 5 by the VND. A new local minimum s∗′ is gener-
ated. In line, 6 the algorithm chooses to accept the new solution or continue from the incumbent s∗.
Solution feasibility is kept at all moments.

Unless otherwise stated, a solution is minimized by the function in Equation 1, following
the lexicographic order of its terms.

e(s) = (|s|,
∑
r∈s

d(r)) (1)

The first term is the number of routes in solution s, and the second term is the total distance traveled
by all routes. Note that the second term is usually referred as the total cost, though, in this case,
distance and cost will be used interchangeably.

3.1. Initial Solution
Initial solutions are generated by a modified version of the Insertion Heuristic proposed

by Solomon [1987]. First, an empty route is initialized with one request, using two criteria. From
the set of requests, those that have a feasible insertion and the pickup location with minimum value
of starting time window are chosen. When more than one request meets the previous criterion, the
one with the pickup location closest to the depot (minimum distance) is chosen. If there are any ties
left, the pickup location with highest index is selected. A similar method was proposed by Li and
Lim [2003]. Then, for each unrouted request, its best position in the route is computed as the sum
of the costs to insert the pickup and the delivery location in the given position. The request and
position that minimize the objective function are chosen.

3625

XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

This procedure is repeated until there are no more requests to be routed, or no more
feasible insertions, whichever happens first. If all requests have been routed, a feasible solution is
returned. Otherwise, a feasible solution could not be generated, and the algorithm halts returning
no solution.

3.2. Variable Neighborhood Descent
The embedded VND works as the local search procedure in the ILS. The proposed method

is allowed to iterate overK times. This allows for a better search of solutions, avoiding certain local
minima, while being reasonably fast.

Four neighborhoods are used in the proposed IVND: i) Shift Request, ii) Exchange Re-
quest, iii) Rearrange Request, and iv) Unbalanced Shift Request. The first three were used by Nanry
and Barnes [2000]; Li and Lim [2003], while the last is inspired by a method of Bent and Van Hen-
tenryck [2006]. All of them are explored in a best improvement manner. For all neighborhoods,
described next, infeasible moves are forbidden with regards to the PDPTW constraints.

i. Shift Request (SR): The shift neighborhood attempts to move a request from one route to
another. For every pair of routes r1, r2 | r1 6= r2, a request in route r1 is removed and inserted
in r2. The pair and position that minimize the cost the most are chosen. The basic idea is
pictured in Figure 2(b). This neighborhood and Unbalanced Shift Request are important
because they are able to reduce the number of routes.

ii. Exchange Request (ER): The exchange neighborhood swaps two requests between routes.
For every pair of routes r1, r2 | r1 6= r2, a request p1 is removed from route r1, and a
request p2 from route r2. Then, p1 is inserted in r2, as well as p2 is inserted in r1. The pair
and position that minimize the cost the most are chosen. The idea is shown in Figure 2(c).

iii. Rearrange Request (RR): The rearrange neighborhood is the only intra-route neighbor-
hood, meaning its movements only affect a single route. For every route r, a request p is
removed and reinserted in another position in r. The route and position that minimize the
cost the most are chosen. This allows further refinements. Figure 2(d) pictures this idea.

iv. Unbalanced Shift Request (USR): The unbalanced shift neighborhood is based on the Shift
Request. Their difference relies in the objective function used to evaluate the movement. In
the Shift Request, the original evaluation in Equation 1 is used, while in the Unbalanced Shift
Request the objective function presented in Equation 2 is used.

e(s) = (|s|,−
∑
r∈s
|r|2,

∑
r∈s

d(r)) (2)

The terms are also minimized in lexicographical order. The first and last terms are the same
as in Equation 1. The second term maximizes

∑
r∈s |r|2, which means it favors routes with

many locations and fewer locations, instead of routes with a balanced distribution of them.
The same function was proposed by Bent and Van Hentenryck [2006] in the first stage of their
algorithm to reduce the number of vehicles by integrating smaller routes into larger ones.

3.3. Perturbation
The perturbation moves the search to other areas of the solution space, avoiding local

minima. In order to perform perturbation, IVND employs a series of consecutive randomly cho-
sen Exchange Requests. For each exchange, two routes in solution s are picked at random, say
r1, r2 | r1 6= r2, and two requests p1 ∈ r1, p2 ∈ r2 are removed and reinserted at a random
position in the other route, i.e., p1 in r2, and p2 in r1. This is repeated until neN exchanges (ne a
parameter, N the number of request in the instance), or N unsuccessful tries have been performed.
Infeasible movements are forbidden.

3626

XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

Figure 2: Neighborhood Movements of VND

(a) Original (b) Shift (c) Exchange (d) Rearrange

depot moved request other requests

3.4. Acceptance Criterion
The acceptance criterion in ILS guides the search towards solution diversification, or in-

tensification. The proposed IVND employs a criterion based in the number of iterations without
improvement. The method automatically accepts the new s∗′ if its objective function value f(s∗′)
is smaller than the value f(s∗) of the incumbent solution. Otherwise, it accepts s∗′ over s∗ with
probability α(ib/I). Variable ib contains the number of iterations without improvement, parame-
ter I is the maximum number of iterations without improvement, and parameter α is responsible
for adjusting the acceptance rate.

4. Computational Results
In order to test the proposed algorithm, the IVND has been implemented in C++ and com-

piled with the GNU C++ compiler g++ 4.8.4 using -O3 optimization flag. Experiments were
carried out in a computer with AMD FX 8150 processor running at 3.6 GHz, 32 GB of RAM and
operating system Ubuntu 16.04 LTS 64-bits. Only one core has been used during the experiments.

The standard set of PDPTW instances has been used, containing a total of 354 instances.
These instances are separated according to the number of locations: 100, 200, 400, 600, 800, and
1000. Also, for each size, instances are divided according to their location distribution: clustered,
random, or partially clustered and partially random. Further, instances are separated into type 1
instances, with shorter planning horizon, and type 2, with longer planning horizon. All instances as
well as best known solutions (BKS) are available at SINTEF’s Website [SINTEF, 2017].

Because the IVND is an stochastic method, the results for each instance are the average
of 10 runs. Also, due to the fact that results for all the 354 instances would not fit in the available
space, only the average of all instances for each size and planning horizon type is presented. More
details can be obtained from the the online repository (https://bitbucket.org/cssartori/
ivnd-pdptw/).

Experiments were also made with 40 real-world instances provided by the partner com-
pany, uMov.me, for a scenario closely related to the PDPTW, with sizes varying from 1 to 70
requests. Due to the lack of space, we could not report these results. However our analysis verified
that the IVND was able to reach good solutions in small time for these instances. More detailed
information can be obtained from the work of Sartori [2016] and from the repository.

4.1. Parameters
In Section 3 the IVND was defined with five parameters: maximum number of iterations

without improvement (I), maximum number of VND iterations (K), acceptance rate (α), perturba-
tion size (ne), and VND’s neighborhood order (N). To choose their values a tuning procedure was

3627

XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

employed using the irace package, López-Ibánez et al. [2011]. The scenario defined for irace
had a maximum running time of 320,000 seconds and a total of 18 instances, 3 for each size. The
parameters ranges tested, as well as the best values reported by irace can be seen in Table 1.

Table 1: Parameter tuning ranges for irace

Parameter Range Best Value
I {50,...,100} 82
K {50,...,100} 98
α {0.0,...,1.0} 0.288
ne {0.01,...,0.50} 0.266
N {SR, ER, RR, USR} SR, RR, ER, USR

4.2. General Performance of IVND
Table 2 presents the average initial and final results of the IVND for each size and type

of instance. Column Num. is the total number of instances tested per type and size. Columns #Vb,
#Vi and #Vf are the average number of vehicles of the BKS, of the initial solution of IVND, and
of the final solution of IVND, respectively. Column gapc (%) refers to the percentage deviation
of the total cost, or distance, of IVND solution s relatively to the BKS s∗: it is calculated as
gapc(s) = (sc − s∗c)/s∗c , where sc is the accumulated cost of all routes in a solution s. Column
gapv (%) is the percentage deviation of the number of vehicles of the final solution to the BKS,
given by gapv(s) = (sv − s∗v)/s

∗
v, where sv is the number of vehicles used in solution s. The

column t(s) gives the average CPU time in seconds taken to reach the reported solution.

Table 2: Average Initial and Final Results of IVND for standard instances

Instances BKS Initial Solution Final Solution
Type Size Num. #Vb Cost #Vi gapc(%) t(s) #Vf gapv(%) gapc(%) t(s)

1

100 29 11.10 1,158.50 14.24 28.37 0.01 11.52 3.86 0.35 0.56
200 30 15.43 3,439.06 19.30 39.65 0.06 16.83 10.57 -3.62 12.60
400 30 29.37 8,175.50 36.80 42.54 0.31 32.75 13.92 -1.62 76.80
600 30 42.47 16,352.54 52.57 47.12 1.31 46.82 12.91 2.01 210.64
800 30 55.13 28,265.12 67.90 48.68 2.83 61.42 14.90 3.95 385.51

1000 30 68.33 43,590.16 83.27 45.84 14.91 76.10 15.35 4.94 693.80
Avg. 36.97 16,830.15 45.68 42.03 3.24 40.91 11.92 1.00 229.99

2

100 27 2.96 906.04 4.30 75.02 0.04 3.03 2.90 0.93 4.77
200 30 4.57 2,690.69 6.17 73.73 0.27 5.07 14.53 -4.23 48.95
400 30 8.53 6,278.10 11.83 87.31 1.89 10.07 24.63 -1.30 182.48
600 30 12.03 13,422.25 16.63 82.77 5.59 14.42 27.59 0.16 328.12
800 30 15.70 21,595.10 22.03 86.14 15.48 19.28 32.36 6.28 398.96

1000 28 19.57 31,431.00 26.50 79.50 25.79 23.60 29.72 7.97 664.33
Avg. 10.56 12,720.53 14.58 80.75 8.18 12.41 21.96 1.64 271.27

Avg. 23.77 14,801.56 30.13 61.39 5.71 26.66 16.94 1.32 250.63

There is a major difference between solution quality of type 1 and type 2 instances for
both initial and final solutions. Initially, type 1 instances have 9 more vehicles in average than the
BKS, while type 2 instances have only an average of 4 more vehicles. However, the total cost of
the routes has an average gapc of 40% for type 1 and 80% for type 2 instances. The main reason for
these differences is that shorter routes are harder to create at first, hence more routes are needed to
attend all requests. Additionally, it is more straightforward to find better insertion positions when
routes are smaller, reducing the total cost.

In the final solutions, the number of additional vehicles drops to only 4 for type 1 instances
and only 2 for type 2. However, the average gapv of the instances is high, reaching 15% on type 1
and 32% on type 2 instances. The final gapc decreases to 1.00% for type 1 and to 1.32% for type 2
instances. Some negative gaps are possible, even though the solution is not better than the BKS,
because when the IVND can no longer reduce the number of vehicles, it reduces the total cost of
the routes. A similar situation has been reported by Ropke and Pisinger [2006].

3628

XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

4.3. Comparing Results from the IVND and Literature Methods
This section compares the IVND performance to the main methods from the literature

published to our knowledge. Table 3 presents the computational environment for each of the meth-
ods. Column Reference presents the referred work, column Acronym presents an abbreviation used
to refer to the work, and column Instances gives the instances that were tested with the method.
Column Environment gives the processor used, while column speed(%) presents an estimated per-
centage of speed of each computer relative to the computer used by this work. The estimation is
highly conservative, and is based in the PassMark Tool (http://www.cpubenchmark.net).

Table 3: Computational Environments

Reference Acronym Instances Environment speed(%)

Li and Lim [2003] LL {100} Intel 686 Generation 12.50
Bent and Van Hentenryck [2006] BVH {100, 200, 600} AMD Athlon K7 (1.2 GHz) 16.67
Ropke and Pisinger [2006] RP All Pentium IV (1.5 GHz) 20.00
This Work IVND All AMD FX 8150 (3.6 GHz) 100.00

In Table 4 the results of IVND for each size and instance type are compared to the results
of the other three methods, by means of the number of vehicles (#V), the cost gap (gapc(%)) and
running time (t(s)). The BKS column has been omitted, though it is available in Table 2. The
reported times are all normalized to the time of our tests, following the relation in Table 3.

Table 4: Comparison of IVND average results with the main literature methods. Sign - means there is not
enough information to compute the results; sign x means the method was not tested on the set of instances.

LL BVH RP IVND
Type Inst. Size #V gapc(%) t(s) #V gapc(%) t(s) #V gapc(%) t(s) #V gapc(%) t(s)

1

100 11.21 -1.17 36.95 11.10 0.00 64.81 11.10 0.01 8.19 11.52 0.35 0.56
200 - - - 15.77 -2.26 172.17 15.64 -1.63 31.67 16.83 -3.62 12.60
400 - - - x x x 30.15 -1.44 108.52 32.75 -1.62 76.80
600 - - - 43.93 -0.88 602.22 43.72 -1.15 272.31 46.82 2.01 210.64
800 - - - x x x 50.57 -0.98 493.54 61.42 3.95 385.51
1000 - - - x x x 70.15 -1.45 756.14 76.10 4.94 693.80
Avg. - - - - - - 36.89 -1.11 278.40 40.91 1.00 229.99

2

100 2.96 1.57 159.72 2.96 0.01 57.68 3.00 0.57 18.48 3.03 0.93 4.77
200 - - - 4.77 -0.23 194.34 4.63 0.66 73.75 5.07 -4.23 48.95
400 - - - x x x 8.77 -0.84 243.82 10.07 -1.30 182.48
600 - - - 13.37 -0.89 621.80 12.5 -3.74 615.91 14.42 0.16 328.12
800 - - - x x x 16.59 -6.82 1,073.52 19.28 6.28 398.96
1000 - - - x x x 20.48 -3.01 1,414.42 23.60 7.97 664.33
Avg. - - - - - - 10.99 -2.20 573.32 12.41 1.64 271.27

Avg. - - - - - - 23.94 -1.66 425.86 26.66 1.32 250.63

Most of the gapc(%) are negative, which as noted before does not imply a better solution.
The number of vehicles (#V) is the first objective to be minimized, thus the solution is only better
if the number of vehicles is indeed smaller than of the BKS.

Those results show that the IVND, in spite of its simplicity, is able to reach good solutions
in competitive time, especially for instances of size 100, 200 and 400. For these, its solution quality
and running times are comparable to the ones found in the literature. However, the state-of-the-art
method could not be outperformed by the IVND. For all of the cases, Ropke and Pisinger [2006]
still holds the best results both in solution quality and time.

Note that the proposed IVND always keeps solution feasibility, which is expensive, espe-
cially in a problem with many side constraints as the PDPTW. Moreover, this limits the ability to
walk in the solution space and move from one region to the other, exploring certain areas that could
lead to better solutions. Even though the precedence constraint feasibility, as well as the capacity
feasibility, are important in a real-world situation, the time windows could be allowed to become
infeasible, and still be acceptable from the real point of view, since delays are likely to occur up to
some extent in real applications.

3629

XLIX Simpósio Brasileiro de Pesquisa Operacional
Blumenau-SC, 27 a 30 de Agosto de 2017.

5. Conclusion and Future Works
This work proposed an Iterated Variable Neighborhood Descent algorithm to solve the

Pickup and Delivery Problem with Time Windows, which is a combinatorial NP-Hard problem
with practical applications. The method has been designed to be as simple as possible, and in fact
the Iterated Local Search framework suits this purpose. Further, experiments with the standard set
of instances for the problem have been carried out to check the performance of the algorithm.

The proposed IVND was able to perform well for some of the literature instances. It
has been shown how an ILS based algorithm, with best improvement strategy and exploring only
feasible regions was able to scale on the PDPTW. Results support the fact that it scales even for the
largest instances in the standard set, and that the average running time is usually low enough for
practical uses. Although, it was not able to outperform the state-of-the-art method.

In future works, we plan on trying new solution approaches, such as matheuristics. We
also plan on exploring the infeasible regions of the solution space to analyze the impact on solution
quality. At last, throughout the interaction with the partner company we plan on studying the same
variation with soft time windows, because it is important from a real point of view, as delays are
likely to occur in real-world scenarios.

6. Acknowledgments
The authors would like to acknowledge the scholarship support provided by Conselho

Nacional de Desenvolvimento Cientı́fico e Tecnológico (CNPq), and the partnership of company
uMov.me during this project.

References
Bent, R. and Van Hentenryck, P. (2006). A two-stage hybrid algorithm for pickup and delivery

vehicle routing problems with time windows. Computers & Operations Research, 33:875–893.

Li, H. and Lim, A. (2003). A metaheuristic for the pickup and delivery problem with time windows.
International Journal on Artificial Intelligence Tools, 12(02):173–186.

López-Ibánez, M., Dubois-Lacoste, J., Stützle, T., and Birattari, M. (2011). The irace package, iter-
ated race for automatic algorithm configuration. Technical report, Université Libre de Bruxelles.

Lourenço, H. R., Martin, O. C., and Stützle, T. (2010). Iterated Local Search: Framework and
Applications, p. 363–397. Springer US, Boston, MA.

Mladenović, N. and Hansen, P. (1997). Variable neighborhood search. Computers & Operations
Research, 24(11):1097–1100.

Nanry, W. P. and Barnes, J. W. (2000). Solving the pickup and delivery problem with time windows
using reactive tabu search. Transportation Research Part B: Methodological, 34(2):107–121.

Pisinger, D. and Ropke, S. (2007). A general heuristic for vehicle routing problems. Computers &
operations research, 34(8):2403–2435.

Ropke, S. and Pisinger, D. (2006). An adaptive large neighborhood search heuristic for the pickup
and delivery problem with time windows. Transportation science, 40(4):455–472.

Sartori, C. S. (2016). Optimizing solutions for the pickup and delivery problem. Bachelor thesis in
computer science, UFRGS. Available at: http://hdl.handle.net/10183/150897.

SINTEF (2017). Information on li & lim instances. Available at: https://www.sintef.no/
projectweb/top/pdptw/li-lim-benchmark/. Accessed: 2017-01-19.

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems with time
window constraints. Operations research, 35(2):254–265.

3630

