Review of Last Lecture

- Model Parameters from Measurements
- Random Multipath Model
- Channel Impulse Response

$$\boldsymbol{c}(\tau,\boldsymbol{t}) = \sum_{n=1}^{N} \alpha_n(\boldsymbol{t}) \boldsymbol{e}^{-j\varphi_n(\boldsymbol{t})} \delta(\tau - \tau_n(\boldsymbol{t}))$$

- Many multipath components, Amplitudes change slowly, Phases change rapidly
- For delay spread max $|\tau_n(t)-\tau_m(t)| \leq 1/B_{,u}(t) \approx u(t-\tau)$.
 - Received signal given by

$$r(t) = \Re\left\{u(t)e^{j2\pi f_c t} \left[\sum_{n=0}^{N(t)} \alpha_n(t)e^{-j\phi_n(t)}\right]\right\}$$

- No signal distortion in time
- Multipath yields complex scale factor in brackets

Review Continued: Narrowband Model

- For N(t) large, in-phase $r_I(t)$ and quadrature $r_Q(t)$ components are jointly Gaussian by CLT (sum of large # of random vars).
- Received signal characterized by its mean, autocorrelation, and cross-correlation.
- If phase distribution is uniform, the in-phase/quad components are zero mean, independent, and stationary

Signal Envelope Distribution

- CLT approx. leads to Rayleigh distribution (power is exponential)
- When LOS component present, Ricean distribution is used
- Measurements support Nakagami distribution in some environments
 - Similar to Ricean, but models "worse than Rayleigh"
 - Lends itself better to closed form BER expressions

Wideband Channels

- Individual multipath components resolvable
- True when time difference between components exceeds signal bandwidth
- Requires statistical characterization of $c(\tau,t)$
 - Assume CLT, stationarity and uncorrelated scattering
 - Leads to simplification of its autocorrelation function

Signal Envelope Distribution

- CLT approx. for no dominant multipath component leads to Rayleigh distribution (power is exponential).
- When LOS component present, Ricean distribution is used
- Some measurements support Nakagami distribution
 - Parameterized by m > 0.5, varying from LOS power to multipath
 - Similar to Ricean ($m \approx K$, $K \geq 1$), but models "worse than Rayleigh"
 - Yields closed form **BER** expressions

$$p_Z(z) = \frac{2m^m z^{2m-1}}{\Gamma(m)P_r^m} \exp\left[\frac{-mz^2}{P_r}\right]$$

m > .5

Shannon Capacity

- Defined as the maximum mutual information of channel
- Maximum error-free data rate a channel can support.
- Theoretical limit (not achievable)
- Channel characteristic
 - Not dependent on design techniques

Capacity of Flat-Fading Channels

- Capacity defines theoretical rate limit
 - Maximum error free rate a channel can support
- Depends on what is known about channel
- Only fading distribution is known
 - Hard to find capacity
- Fading known at receiver only

$$C = \int B \log_2(1+\gamma)p(\gamma)d\gamma \le B \log_2(1+\overline{\gamma})$$

- Fading known at TX and RX
 - Multiplex optimal strategy over each channel state

Capacity with Fading Known at Transmitter and Receiver

- For fixed transmit power, same as with only receiver knowledge of fading
- Transmit power $P(\gamma)$ can also be adapted
- Leads to optimization problem where \overline{P} is the average power constraint

$$C = \max_{P(\gamma): E[P(\gamma)] = \overline{P}} \int_{0}^{\infty} B \log_{2} \left(1 + \frac{\gamma P(\gamma)}{\overline{P}} \right) p(\gamma) d\gamma$$

Channel Inversion

- Fading inverted to maintain constant SNR
- Simplifies design (fixed rate)
- Greatly reduces capacity
 - Capacity is zero in Rayleigh fading
- Truncated inversion
 - Invert channel above cutoff fade depth
 - Constant SNR (fixed rate) above cutoff
 - Cutoff greatly increases capacity
 - Close to optimal

Capacity in Flat-Fading

Rayleigh

Log-Normal

Introduction to Diversity

• Basic Idea

- Send same bits over independent fading paths
 - Independent fading paths obtained by time, space, frequency, or polarization diversity
- Combine paths to mitigate fading effects

Multiple paths unlikely to fade simultaneously

Combining Techniques

- Selection Combining
 - Fading path with highest gain used
- Maximal Ratio Combining
 - All paths cophased and summed with optimal weighting to maximize combiner output SNR
- Equal Gain Combining
 - All paths cophased and summed with equal weighting
- Array/Diversity gain
 - Array gain is from noise averaging (AWGN and fading)
 - Diversity gain is change in BER slope (fading)

Selection Combining Analysis and Performance

• Selection Combining (SC)

- Combiner SNR is the maximum of the branch SNRs.
- CDF easy to obtain, pdf found by differentiating.
- Diminishing returns with number of antennas.
- Can get up to about 20 dB of gain.

Figure 7.2: Outage Probability of Selection Combining in Rayleigh Fading.

MRC and its Performance

- With MRC, $\gamma_{\Sigma} = \Sigma \gamma_i$ for branch SNRs γ_i
 - Optimal technique to maximize output SNR
 - Yields 20-40 dB performance gains
 - Distribution of γ_{Σ} hard to obtain
- Standard average BER calculation

$$\overline{P}_{b} = \int P_{b}(\gamma_{\Sigma}) p(\gamma_{\Sigma}) d\gamma_{\Sigma} = \int \int \dots \int P_{b}(\gamma_{\Sigma}) p(\gamma_{1}) * p(\gamma_{2}) * \dots * p(\gamma_{M}) d\gamma_{1} d\gamma_{2} \dots d\gamma_{M}$$

- Hard to obtain in closed form
- Integral often diverges
- Preview: MGF Approach:

$$\overline{P}_{b} = \frac{1}{\pi} \int_{0}^{.5\pi} \prod_{i=1}^{M} \mathcal{M}_{i} \left[\frac{-g}{\sin^{2} \varphi}; \gamma_{i} \right] d\varphi$$

Adaptive Modulation

- Change modulation relative to fading
- Parameters to adapt:
 - Constellation size
 - Transmit power
 - Instantaneous BER
 - Symbol time
 - Coding rate/scheme

Only 1-2 degrees of freedom needed for good performance

- Optimization criterion:
 - Maximize throughput
 - Minimize average power
 - Minimize average BER

Variable-Rate Variable-Power MQAM

Goal: Optimize $P(\gamma)$ and $M(\gamma)$ to maximize $R=Elog[M(\gamma)]$

Spectral Efficiency

Can reduce gap by superimposing a trellis code

Constellation Restriction

- Restrict $M_D(\gamma)$ to $\{M_0=0,...,M_N\}$.
- Let $M(\gamma) = \gamma / \gamma_{K}^{*}$, where γ_{K}^{*} is optimized for max rate
- Set $M_D(\gamma)$ to $\max_j M_j: M_j \le M(\gamma)$ (conservative)
- Region boundaries are $\gamma_i = M_i \gamma_K^*$, j = 0,...,N

Power Adaptation and Average Rate

- Power adaptation:
 - Fixed BER within each region
 - $E_s/N_0 = (M_i 1)/K$
 - Channel inversion within a region
 - Requires power increase when increasing $M(\gamma)$

$$\frac{P_{j}(\gamma)}{P} = \begin{cases} (M_{j} - 1)/(\gamma K) & \gamma_{j} \leq \gamma < \gamma_{j+1}, j > 0\\ 0 & \gamma < \gamma_{1} \end{cases}$$

• Average Rate

$$\frac{R}{B} = \sum_{j=1}^{N} \log_2 M_j p(\gamma_j \le \gamma < \gamma_{j+1})$$

Efficiency in Rayleigh Fading

Multiple Input Multiple Output (MIMO)Systems

• MIMO systems have multiple transmit and receiver antennas (M_t at TX, M_r at RX)

- Input described by vector x of dimension M_t
- Output described by vector y of dimension M_r
- Channel described by $M_r x M_t$ matrix
- Design and capacity analysis depends on what is known about channel *H* at TX and RX
 - If H unknown at TX, requires vector modulation/demod

MIMO Decomposition

 Decompose channel through transmit precoding (x=Vx̃) and receiver shaping (ỹ=U^Hy)

- Leads to $R_H \le \min(M_t, M_r)$ independent channels with gain σ_i (ith singular value of H) and AWGN
- Independent channels lead to simple capacity analysis and modulation/demodulation design

Capacity of MIMO Systems

- Depends on what is known at TX and RX and if channel is static or fading
- For static channel with perfect CSI at TX and RX, power water-filling over space is optimal:
 - In fading waterfill over space (based on short-term power constraint) or space-time (long-term constraint)
- Without transmitter channel knowledge, capacity metric is based on an outage probability
 - P_{out} is the probability that the channel capacity given the channel realization is below the transmission rate.

Beamforming

Scalar codes with transmit precoding

- Transforms system into a SISO system with diversity.
 - •Array and diversity gain
 - •Greatly simplifies encoding and decoding.
 - •Channel indicates the best direction to beamform
 - •Need "sufficient" knowledge for optimality of beamforming

Multicarrier Modulation

- Breaks data into N substreams
- Substream modulated onto separate carriers
 - Substream passband BW is B/N for B total BW
 - B/N<B_c implies flat fading on each subcarrier (no ISI)

Overlapping Substreams

- Can have completely separate subchannels
 - Required passband bandwidth is B.
- OFDM overlaps substreams
 - Substreams (symbol time T_N) separated in RX
 - Minimum substream separation is $1/T_N$ for rectangular pulses
 - Total required bandwidth is B/2

mmWave: What's the big deal?

All existing commercial systems fit into a small fraction of the mmWave band

mmWave Propagation (60-100GHz)

mmW Massive MIMO

- Channel models immature
 - Based on measurements, few accurate analytical models
- Path loss proportion to λ^2 (huge)
- Also have oxygen and rain absorbtion

mmWave systems will be short range or require "massive MIMO"