Review of Last Lecture

® Model Parameters from Measurements

® Random Multipath Model
® Channel Impulse Response

(e, t) =Y, (e S -7, (1))

® Many multipath components, Amplitudes change slowly,

Phases change rapidly

® For delay spread max|7,()-7,(9)| << 1/B u() = u(t-1).

® Received signal given by

. N (1) .
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n=0
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No signal distortion in time
Multipath yields complex
scale factor in brackets




Review Continued:

Narrowband Model

® For NV(?) large, in-phase rf7) and quadrature ry(?)
components are jointly Gaussian by CLT (sum of
large # of random vars).

® Received signal characterized by its mean, auto-
correlation, and cross-correlation.

e If phase distribution is uniform, the in-phase/quad
components are zero mean, independent, and
stationary



Signal Envelope Distribution

e CLT approx. leads to Rayleigh distribution (power
is exponential)

® When LOS component present, Ricean
distribution is used

® Measurements support Nakagami distribution in
some environments
® Similar to Ricean, but models “worse than Rayleigh”

® Lends itself better to closed form BER expressions



Wideband Channels

® Individual multipath components resolvable

® True when time difference between components
exceeds signal bandwidth

® Requires statistical characterization of c(Tt,t)
® Assume CLT, stationarity and uncorrelated scattering

® Leads to simplification of its autocorrelation function
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Signal Envelope Distribution

e CLT approx. for no dominant multipath component leads to
Rayleigh distribution (power is exponential).

e When LOS component present, Ricean distribution is used

® Some measurements support Nakagami distribution
® Parameterized by m > 0.5, varying from LOS power to multipath
® Similar to Ricean (m = K, K2 1), but models “worse than Raylelgh”

® Yields closed form BER expressions

m ,2m—1 ' 2 2}

m > .5




Shannon Capacity

® Defined as the maximum mutual
information of channel

® Maximum error-free data rate a channel
can suppott.

® Theoretical limit (not achievable)

e Channel charactetistic
® Not dependent on design techniques



Capacity of Flat-Fading Channels

e Capacity defines theoretical rate limit

® Maximum error free rate a channel can support

® Depends on what is known about channel

® Only fading distribution is known
® Hard to find capacity

e Fading known at receiver only

C = [Blog,(1+7)p(y)dy < Blog,,(1+7)
0
® Fading known at TX and RX

® Multiplex optimal strategy over each channel state



Capacity with Fading Known at
Transmitter and Receiver

® For fixed transmit power, same as with
only receiver knowledge of fading

® Transmit power P(») can also be adapted

® Leads to optimization problem where P is
the average power constraint

. IogZ(1+ il )jp(y)dy

P(): E[P(?/)]



Channel Inversion

e Fading inverted to maintain constant SNR
e Simplifies design (fixed rate)

® Greatly reduces capacity
® Capacity is zero in Rayleigh fading

® Truncated inversion

® Invert channel above cutoff fade depth
® Constant SNR (fixed rate) above cutoff

® Cutoff greatly increases capacity
e Close to optimal



Capacity in Flat-Fading
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Introduction to Diversity

® Basic Idea

® Send same bits over independent fading paths

e Independent fading paths obtained by time, space,
frequency, or polarization diversity

® Combine paths to mitigate fading effects

*——=0

Ty

Multiple paths unlikely to fade simultaneously



Combining Techniques

® Selection Combining
® Fading path with highest gain used

e Maximal Ratio Combining

® All paths cophased and summed with optimal
weighting to maximize combiner output SNR

® Equal Gain Combining
® All paths cophased and summed with equal weighting

® Array/Diversity gain

® Array gain is from noise averaging (AWGN and fading)
® Diversity gain is change in BER slope (fading)



Selection Combining
Analysis and Performance

® Selection Combining (SC)
® Combiner SNR is the maximum of the branch SNRs.
® CDF easy to obtain, pdf found by differentiating.
® Diminishing returns with number of antennas.
® Can get up to about 20 dB of galn

Outage
Probability

Figure 7.2: Outage Probability of Selection Combining in Rayleigh Fading.



MRC and its Performance

e With MRC, y,=Sy, for branch SNRsY,

® Optimal technique to maximize output SNR
® Yields 20-40 dB performance gains
® Distribution of Y5 hard to obtain

e Standard average BER calculation
P, = [R(s) prs)dys = [ -] B (s) P) = P(2) .o P(ra)drady,. A7y

® Hard to obtain in closed form
® Integral often diverges

® Preview: MGF Approach:




Adaptive Modulation

® Change modulation relative to fading

® Parameters to adapt:

® Constellation size

® Transmit power

® Instantaneous BER
® Symbol time

® Coding rate/scheme

Only 1-2 degrees of freedom needed for good performance

e Optimization criterion:

® Maximize throughput
® Minimize average power
® Minimize average BER



Variable-Rate Variable-Power MQAM
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Spectral Efficiency
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Constellation Restriction

® Restrict M(Y) to {M,=0,...,M\;}.

o Let M(Y)=y/vx , where ¢~ is optimized for max rate
® Set My(y) to max; M;: M, < M(Y) (consetvative)

® Region boundaries are y,=Myg*, j=0,...,N

e Power control maintains target BER
L S M(y)=y/ 'YK*

M(Y)=Y/vx
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Power Adaptation and Average Rate

® Power adaptation:

® Fixed BER within each region
e E/Ny=(M;-1)/K
e Channel inversion within a region

® Requires power increase when increasing M(y)

P(7) _[(Mj=DI(K) ¥ <y<yjs.]>0
P 0 Yy <N

® Average Rate

R N
B <



Efficiency in Rayleigh Fading
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Multiple Input Multiple
Output (MIMO)Systems

e MIMO systems have multiple transmit and receiver
antennas (M, at TX, M_at RX)

X=[Xg5e e 0o Xpae] ‘M Y=[Y1ee0¥Ymil

TX power constraint: ‘ ‘

E[xxH]=0=P/c?
® Input described by vector x of dimension M,

y=Hx+n

® Output described by vector y of dimension M,
® Channel described by M xM matrix

® Design and capacity analysis depends on what is
known about channel H at TX and RX

® If H unknown at TX, requires vector modulation/demod



MIMO Decomposition

® Decompose channel through transmit precoding
(x=Vx) and receiver shaping (y=U"y)

y=Hx+n y=ZX+n

® Leads to Ry<min(M,M)) independent channels
with gain G, (i*" singular value of H) and AWGN

e Independent channels lead to simple capacity
analysis and modulation/demodulation design



Capacity of MIMO Systems

® Depends on what is known at TX and RX and if
channel is static or fading

® For static channel with perfect CSI at TX and

RX, power water-filling over space is optimal:

® In fading waterfill over space (based on short-term
power constraint) or space-time (long-term constraint)

e Without transmitter channel knowledge, capacity
metric is based on an outage probability

® P_ . is the probability that the channel capacity given
the channel realization is below the transmission rate.



Beamforming

® Scalar codes with transmit precoding

y=u"Hvx+uHn

* Transforms system into a SISO system with diversity.
*Array and diversity gain
*Greatly simplifies encoding and decoding.
*Channel indicates the best direction to beamform
*Need “sufficient” knowledge for optimality of beamforming



Multicarrier Modulation
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® Breaks data into N substreams

® Substream modulated onto separate carriers

® Substream passband BW is B/N for B total BW
® B/N<B_implies flat fading on each subcarrier (no ISI)



Overlapping Substreams

e Can have completely separate subchannels
® Required passband bandwidth is B.

e OFDM overlaps substreams
® Substreams (symbol time T,)) separated in RX

® Minimum substream separation is 1/ Ty, for
rectangular pulses

® Total required bandwidth is B/2
B/IN




mmWave: What’s the big deal?
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All existing commercial systems fit into a small fraction of the mmWave band



mmWave Propagation

(60-100GHz)

® Channel models immature
® Based on measurements, few accurate analytical models

e Path loss proportion to A% (huge)
e Also have oxygen and rain absorbtion
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mmWave systems will be short range or require “massive MIMO”



