EE359 – Lecture 2 Outline

• TX and RX Signal Models

• Path Loss Models

- Free-space and 2-Ray Models
- General Ray Tracing
- Simplified Path Loss Model
- Empirical Models
- Shadowing
- mmWave Models

Propagation Characteristics

- Path Loss (includes average shadowing)
- Shadowing (due to obstructions)
- Multipath Fading

Path Loss Modeling

- Maxwell's equations
 - Complex and impractical
- Free space and 2-path models
 Too simple
- Ray tracing models
 - Requires site-specific information
- Simplified power falloff models
 - Main characteristics: good for high-level analysis
- Empirical Models
 - Don't always generalize to other environments

Free Space (LOS) Model

- Path loss for unobstructed LOS path
- Power falls off: • Proportional to $1/d^2$ $\frac{P_r}{P_t} = \left[\frac{\sqrt{G_l}\lambda}{4\pi d}\right]^2$
 - Proportional to $1/d^2$ P_t
 - Proportional to λ^2 (inversely proportional to f^2)
 - This is due to the effective aperature of the antenna
 - Free-space path loss

$$P_L \,\mathrm{dB} = 10 \log_{10} \frac{P_t}{P_r} = -10 \log_{10} \frac{G_l \lambda^2}{(4\pi d)^2}$$

Two Ray Model

- Path loss for one LOS path and 1 ground (or reflected) bounce
- Ground bounce approximately cancels LOS path above critical distance
- Power falls off
 - Proportional to d² (small d)
 - Proportional to d^4 (d>d_c)
 - Independent of λ (f_c)
 - Two-path cancellation equivalent to 2-element array, i.e. the effective aperature of the receive antenna is changed.

Two Ray Model

General Ray Tracing

- Models signal components as particles
 - Reflections
 - Scattering
 - Diffraction

Reflections generally dominate

• Requires site geometry and dielectric properties

• Easier than Maxwell (geometry vs. differential eqns)

• Computer packages often used 10-ray reflection model explored in HW

Simplified Path Loss Model

- Used when path loss dominated by reflections.
- Most important parameter is the path loss exponent γ, determined empirically.

$$P_r = P_t K \left[\frac{d_0}{d} \right]^{\gamma},$$

$$2 \le \gamma \le 8$$

Empirical Channel Models

- Cellular Models: Okumura model and extensions:
 - Empirically based (site/freq specific), uses graphs
 - Hata model: Analytical approximation to Okumura
 - Cost 231 Model: extends Hata to higher freq. (2 GHz)
 - Multi-slope model
 - Walfish/Bertoni: extends Cost 231 to include diffraction

• WiFi channel models: TGn

• Empirical model for 802.11n developed within the IEEE standards committee. Free space loss up to a breakpoint, then slope of 3.5. Breakpoint is empirically-based.

Commonly used in cellular and WiFi system simulations

Empirical Channel Models

• Okumura model:

 $P_L(d) \, d\mathbf{B} = L(f_c, d) + A_{mu}(f_c, d) - G(h_t) - G(h_r) - G_{AREA}$

• in which d is the distance, f_c is the carrier frequency, $L(f_c, d)$ is free space path loss, $A_{mu}(f_c, d)$ is the median attenuation in addition to free space path loss across all environments, $G(h_t)$ is the base station antenna height gain factor, $G(h_t)$ is the mobile antenna height gain factor, and G_{AREA} is the gain due to the type of environment

Empirical Channel Models

• Multi-slope (piecewise linear) model:

Shadowing

- Models attenuation from obstructions
- Random due to random # and type of obstructions
- Typically follows a log-normal distribution
 - dB value of power is normally distributed
 - $\mu=0$ (mean captured in path loss), $4 < \sigma < 12$ (empirical)
 - Central Limit Theorem used to explain this model
 - Decorrelates over decorrelation distance X_c

Shadowing

- Log-normal distribution (envelope)
 - PDF: $p(\psi_{dB}) = \frac{1}{\sqrt{2\pi}\sigma_{\psi_{dB}}} \exp\left[-\frac{(\psi_{dB} - \mu_{\psi_{dB}})^2}{2\sigma_{\psi_{dB}}^2}\right]$
 - in which ψ_{dB} is the signal envelope, $\mu_{\psi dB}$ is the mean value, and $\sigma_{\psi dB}$ is the standard deviation, all given in dB
 - Empirical studies for outdoor channels support a standard deviation $\sigma_{\psi dB}$ from 4 to 13 dB
 - Mean power $\mu_{\psi dB}$ depends on the path loss and building properties; it decreases with distance

Combined Path Loss and Shadowing

• Linear Model: *\varpsilon* lognormal

• dB Model

$$\frac{P_r}{P_t}(dB) = 10\log_{10} K - 10\gamma \log_{10} \left(\frac{d}{d_0}\right) + \psi_{dB}, \quad \psi_{dB} \sim N(0, \sigma_{\psi}^2)$$

Outage Probability

- Path loss only: circular "cells"; Path loss+shadowing: amoeba-shaped cells
- Outage probability: probability received power falls below given minimum:

$$p_{out} = p(P_r < P_{min})$$

• For log-normal shadowing model

$$p(P_r(d) \le P_{\min}) = 1 - Q\left(\frac{P_{\min} - (P_t + 10\log_{10} K - 10\gamma \log_{10}(d/d_0))}{\sigma_{\psi_{dB}}}\right)$$

Model Parameters from Empirical Measurements

K (**dB**)

 $P_r(dB)$

 $\log(d)$

- Fit model to data
- Path loss (K,γ), d_0 known:
 - "Best fit" line through dB data
 - K obtained from measurements at d_0 .
 - Exponent is Minimal Mean Square Error (MMSE) estimate based on data
 - Captures mean due to shadowing
- Shadowing variance
 - Variance of data relative to path loss model (straight line) with MMSE estimate for γ

Statistical Multipath Model

- Random # of multipath components, each with
 - Random amplitude
 - Random phase
 - Random Doppler shift
 - Random delay
- Random components change with time
- Leads to time-varying channel impulse response

Time Varying Impulse Response

• Response of channel at t to impulse at t-τ:

$$\boldsymbol{c}(\tau,\boldsymbol{t}) = \sum_{n=1}^{N} \alpha_n(\boldsymbol{t}) \boldsymbol{e}^{-j\varphi_n(\boldsymbol{t})} \delta(\tau - \tau_n(\boldsymbol{t}))$$

- t is time when impulse response is observed
- t- τ is time when impulse put into the channel
- τ is how long ago impulse was put into the channel for the current observation
 - path delay for multipath component currently observed

Received Signal Characteristics

- Received signal consists of many multipath components
- Amplitudes change slowly
- Phases change rapidly
 - Constructive and destructive addition of signal components
 - Amplitude fading of received signal (both wideband and narrowband signals)

Narrowband Model

- Assume delay spread $\max_{m,n} |\tau_n(t) \tau_m(t)| << 1/B$
- Then $u(t) \approx u(t-\tau)$.
- Received signal given by

$$r(t) = \Re\left\{u(t)e^{j2\pi f_c t} \left[\sum_{n=0}^{N(t)} \alpha_n(t)e^{-j\phi_n(t)}\right]\right\}$$

- No signal distortion (spreading in time)
- Multipath affects complex scale factor in brackets.
- Assess scale factor by setting $u(t) = e^{i\phi_0}$ (that is, an unmodulated carrier with random phase offset ϕ_0)

In-Phase and Quadrature under Central Limit Theorem Approximation

• In phase and quadrature signal components:

$$r_{I}(t) = \sum_{n=0}^{N(t)} \alpha_{n}(t) e^{-j\phi_{n}(t)} \cos(2\pi f_{c}t),$$
$$r_{Q}(t) = \sum_{n=0}^{N(t)} \alpha_{n}(t) e^{-j\phi_{n}(t)} \sin(2\pi f_{c}t)$$

- For N(t) large, $r_I(t)$ and $r_Q(t)$ jointly Gaussian by CLT (sum of large # of random variables).
- Received signal characterized by its mean, autocorrelation, and cross correlation.
- If $\varphi_n(t)$ uniform, the in-phase/quad components are mean zero, independent, and stationary.

- CLT approx. leads to Rayleigh distribution (power is exponential)
- When LOS component present, Ricean distribution is used
- Measurements support Nakagami distribution in some environments
 - Similar to Ricean, but models "worse than Rayleigh"
 - Lends itself better to closed form BER expressions

• Rayleigh distribution (envelope)

$$p_Z(z) = \frac{2z}{P_r} \exp[-z^2/P_r] = \frac{z}{\sigma^2} \exp[-z^2/(2\sigma^2)], \ x \ge 0,$$

- in which P_r = 2σ² is the average received signal power of the signal, i.e. the received power based on path loss and shadowing alone
- Rayleigh distribution (power)

$$p_{Z^2}(x) = \frac{1}{P_r} e^{-x/P_r} = \frac{1}{2\sigma^2} e^{-x/(2\sigma^2)}, \quad x \ge 0$$

• Rice distribution (envelope)

$$f(x) = rac{2(K+1)x}{\Omega} \exp \Biggl(-K - rac{(K+1)x^2}{\Omega}\Biggr) I_0 \left(2\sqrt{rac{K(K+1)}{\Omega}}x
ight)$$

- in which K is the ratio between the power in the direct path and the power in the scattered paths, and Ω is the total power from both paths
- If K = 0, Rice simplifies to Rayleigh

• Rice distribution (envelope)

• Nakagami distribution (envelope)

$$f(x;\,m,\Omega)=rac{2m^m}{\Gamma(m)\Omega^m}x^{2m-1}\exp\Bigl(-rac{m}{\Omega}x^2\Bigr)$$

- in which *m* is the fading intensity ($m \ge 0.5$), and Ω is a parameter related to the variance
- If *m* = 1, Nakagami simplifies to Rayleigh

• Nakagami distribution (envelope)

