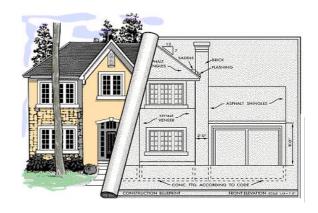
FUNDAÇÃO UNIVERSIDADE ESTADUAL DE MARINGÁ

Centro de Tecnologia - CTC

Departamento de Informática - DIN

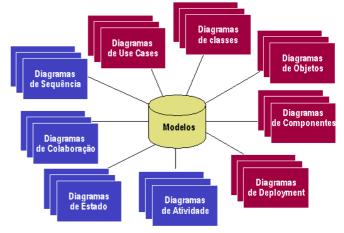
Programa de Pós-Graduação em Ciência da Computação - PCC

ESTÁGIO DE DOCÊNCIA II


Disciplina: Engenharia de Software I Professora: Itana Maria de Souza Gimenes

Curso: Informática Turma: 2º Ano

Mestranda: Edna Tomie Takano Yanaga Datas: 03/04/2006 e 05/04/2006


1. INTRODUÇÃO

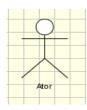
- Impossível construir uma casa sem primeiramente definir sua planta.
- Impossível construir um software sem inicialmente definir sua arquitetura.
- Extremamente importante ter uma representação visual de seu sistema antes que ele entre na etapa de implementação.

2. Unified Modelling Language (UML)

- Linguagem de modelagem visual utilizada para entender, projetar, navegar, configurar, manter e controlar informações sobre um sistema.
- Linguagem de modelagem visual utilizada para especificar, visualizar, construir e documentar artefatos de software.
- UML não é um processo de desenvolvimento. Porém, esta pode ser utilizada em qualquer processo.

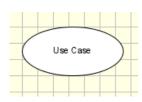
2.1. Elementos de Modelagem

Elementos	Descrição
Processo	Descreve quem está fazendo o quê, como e quando.
Worker ("quem")	Descreve o comportamento do indivíduo no negócio e as responsabilidades.
Artefatos ("o quê")	Informação que é produzido, modificado ou usado por um processo.


	Unidade de trabalho que o indivíduo com um determinado papel deve executar e produzir um resultado no contexto do projeto.
Workflow ("quando")	Seqüência de atividades que produzem um resultado de valor.

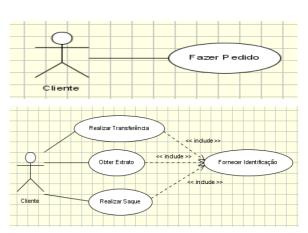
2.2. DIAGRAMA DE USE CASE

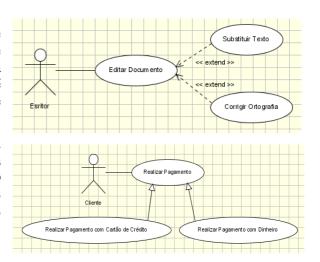
- Técnica utilizada para descrever e definir os requisitos funcionais de um sistema.
- Auxiliar na comunicação entre os analistas e o cliente.
- Descrever um cenário que mostra as funcionalidades do sistema do ponto de vista do usuário.
- ❖ O Diagrama de *Use Case* é composto de:



> Atores

- Um ator é um usuário do sistema, que pode ser um usuário humano ou um outro sistema computacional.
- Categorias de atores:
 - Pessoas (Empregado, Cliente, Gerente, Vendedor, etc).
 - Organizações (Empresa Fornecedora, Administradora de Cartões, etc).


Use Cases


- Um *Use Case* é a especificação de uma sequência de interações entre um sistema e os agentes externos que utilizam este sistema.
- Representa quem faz o que (interage) com o sistema, sem considerar o comportamento interno do sistema.
- Um Use Case é uma funcionalidade do sistema.

> Relacionamentos

- Use Cases e atores n\u00e3o existem sozinhos... Precisamos estabelecer seus relacionamentos!!
- Um ator deve estar relacionado a um ou mais *use cases* do sistema.
- Pode haver relacionamentos entre os use cases de um sistema.
- A UML define alguns tipos de relacionamentos no modelo de *use case*:
 - ✓ Associação: Define uma funcionalidade do sistema do ponto de vista do usuário.
 - ✓ Inclusão: Um relacionamento <<include>> de um use case A para um use case B indica que B é essencial para o comportamento de A.

- ✓ Estender: Um relacionamento <<extend>> de um use case A para um use case B indica que o use case A pode ser acrescentado para descrever o comportamento de B (não é essencial). A extensão é inserida no ponto de extensão do use case B.
- ✓ Generalização: Use case B é_um use case A (A é uma generalização de B, ou B é uma especialização de A). Um relacionamento entre um use case genérico para um mais específico, que herda todas as características de seu pai.

2.2.1. Diretrizes para elaborar Casos de Uso

Identificar os atores:

- Porque o sistema está sendo desenvolvido?
- Quem são os usuários do sistema?
- Quais sistemas externos vão interagir com o novo sistema?

❖ Identificar os *use cases* sob o ponto de vista dos atores:

- Principais tarefas de cada ator?
- Ator precisa ler/escrever/modificar alguma informação no sistema?
- Ator precisa ser informado em alguma situação?
- Quais informações cada aor precisa informar ao sistema?

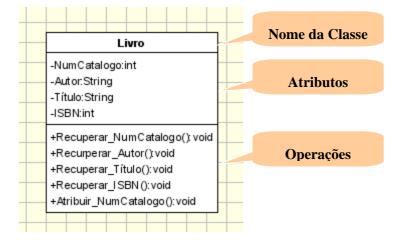
2.2.2. Exercício

Da entrevista com o responsável da biblioteca de uma universidade resultou a seguinte descrição para um novo sistema:

"A atividade da biblioteca centra-se principalmente no empréstimo de publicações pelos alunos da universidade. O empréstimo é registrado pelos funcionários da biblioteca, que também consultam diariamente os empréstimos cujos prazos foram ultrapassados. Todo este processo é efetuado manualmente, sendo muito ineficiente. Espera-se que o novo sistema resolva esta situação. Os alunos necessitam de pesquisar os livros existentes na biblioteca. Caso um livro esteja requisitado é mostrada a data esperada de entrega".

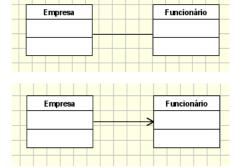
- Efetue o levantamento de requisitos e desenhe o respectivo diagrama de *use cases*.
- Sugestão:
 - ✓ Primeiro identifique os atores, em seguida identifique os respectivos *use cases* e, por fim, o desenhe o diagrama.

2.3. DIAGRAMA DE CLASSE


- Técnica utilizada para modelagem de classes e seus relacionamentos.
- ❖ Analisando os use cases podemos identificar classes e atributos.
- O que é um objeto?
 - É qualquer elemento do mundo real (concreto ou abstrato), constituído de atributos e operações.

❖ O que é uma classe?

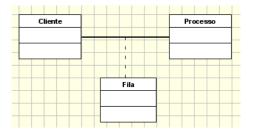
- Classe é a representação de um conjunto de objetos que compartilham a mesma estrutura e comportamento. Ela define:
 - ✓ Estrutura: De que o objeto é composto (atributos)
 - ✓ Comportamento: Como objetos reagem a eventos externos (operações).
- Uma classe é composta de:



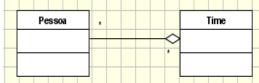
Relacionamentos

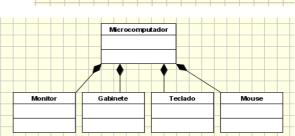
- As classes não vivem sozinhas... Precisamos estabelecer seus relacionamentos!!
- É preciso definir a cardinalidade dos relacionamentos!!
 - ✓ Para expressar a multiplicidade entre os relacionamentos, um intervalo indica quantos objetos estão relacionados no *link*. O intervalo pode ser de zero para um (0..1), zero para vários (0..* ou apenas *), um para vários (1..*), dois (2), cinco para 11 (5..11) e assim por diante. É também possível expressar uma série de números como (1, 4, 6..12). Se não for descrito nenhuma multiplicidade, então é considerado o padrão de um para um (1..1 ou apenas 1).
- A UML define alguns tipos de relacionamentos no modelo de classes. Os relacionamentos podem ser dos seguintes tipos:
 - ✓ Associação: É uma conexão entre classes, e também significa que é uma conexão entre objetos daquelas classes. Uma associação representa que duas classes possuem uma ligação (link) entre elas, significando, por exemplo, que elas "conhecem uma a outra", "estão conectadas com", "para cada X existe um Y" e assim por diante.

Associação Normal: O tipo mais comum de associação é apenas uma conexão entre classes. É representada por uma linha sólida entre duas classes, podendo ser ligado de duas formas, ou seja, em suas duas direções.



Associação Direta: É uma associação normal com uma seta no final da associação indicando que esta só pode ser usada para o lado onde a seta aponta, ou seja, teremos apenas uma direção. Exemplo: Uma empresa possui um trabalhador.


Associação Recursiva: É possível conectar uma classe a ela mesma através de uma associação e que ainda representa semanticamente a conexão entre dois objetos, mas os objetos conectados são da mesma classe. Uma associação deste tipo é chamada de associação recursiva.


Associação de Classe: Uma classe pode ser associada a uma outra associação. Este tipo de associação não é conectada a nenhuma das extremidades da associação já existente, mas na própria linha da associação. Esta associação serve para se adicionar informações extra a associação já existente.

- ✓ Agregação: A agregação é um caso particular da associação. A agregação indica que uma das classes do relacionamento é uma parte, ou está contida em outra classe. As palavras chaves usadas para identificar uma agregação são: "consiste em", "contém", "é parte de". Existem tipos especiais de agregação que são:
 - Agregação Compartilhada: É dita compartilhada quando uma das classes é uma parte, ou está contida na outra, mas esta parte pode estar contida nas outras várias vezes em um mesmo momento.

Agregação de Composição: É uma agregação onde uma classe que está contida na outra "vive" e constitui a outra. Se o objeto da classe que contém for destruído, as classes da agregação de composição serão destruídas juntamente já que as mesmas fazem parte da outra.

- ✓ Generalização: É um relacionamento de um elemento mais geral e outro mais específico. O elemento mais específico pode conter apenas informações adicionais. Uma instância (um objeto é uma instância de uma classe) do elemento mais específico pode ser usada onde o elemento mais geral seja permitido.
- Conta Corrente Poupança

✓ Dependência e Refinamentos (Realização): Dependência é um relacionamento entre elementos, um independente e outro dependente. Uma modificação em um elemento independente

afetará diretamente elementos dependentes do anterior. Refinamento é um relacionamento entre duas descrições de uma mesma entidade, mas em níveis diferentes de abstração.

2.3.1. Exercício

Considere a seguinte informação adicional à descrição apresentada no exercício de *use cases*. Esta informação consiste numa entrevista efetuada pelo consultor Paulo Bastos ao responsável da biblioteca João Almeida.

Paulo Bastos: Como é que funciona o processo de empréstimo de publicações?

João Almeida: Bom, neste momento as publicações disponíveis aos alunos são os livros e as revistas que

assinamos. Um aluno dirige-se com as publicações ao balcão de atendimento para preencher uma ficha de empréstimo. Tem que efetuar uma ficha para cada publicação, preenchendo a cota e o título. Caso seja um livro, terá que escrever o(s) respectivo(s) autor(es).

Paulo Bastos: Existe alguma limitação no número de empréstimos?

João Almeida: Sim, no máximo um aluno pode efetuar 3 empréstimos.

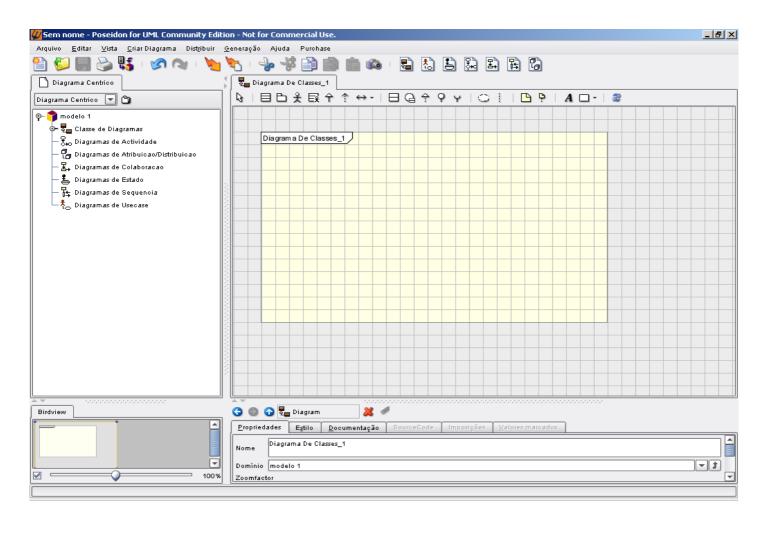
Paulo Bastos: Qual é o procedimento quando chega uma nova publicação?

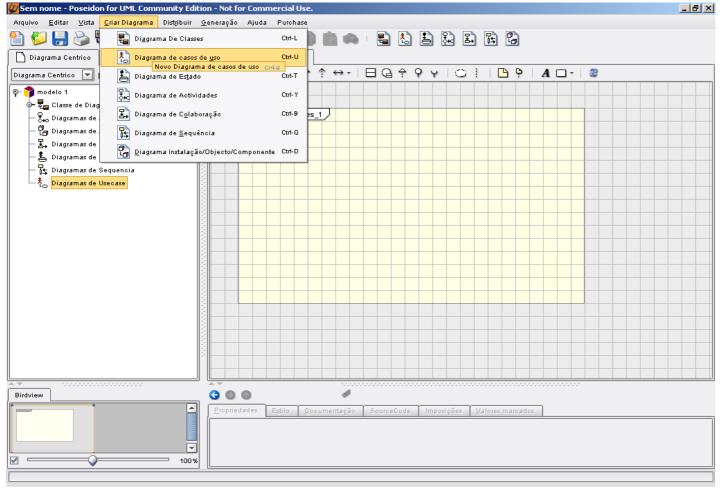
João Almeida: Bem... quando chega uma nova publicação esta é encaminhada para a responsável de

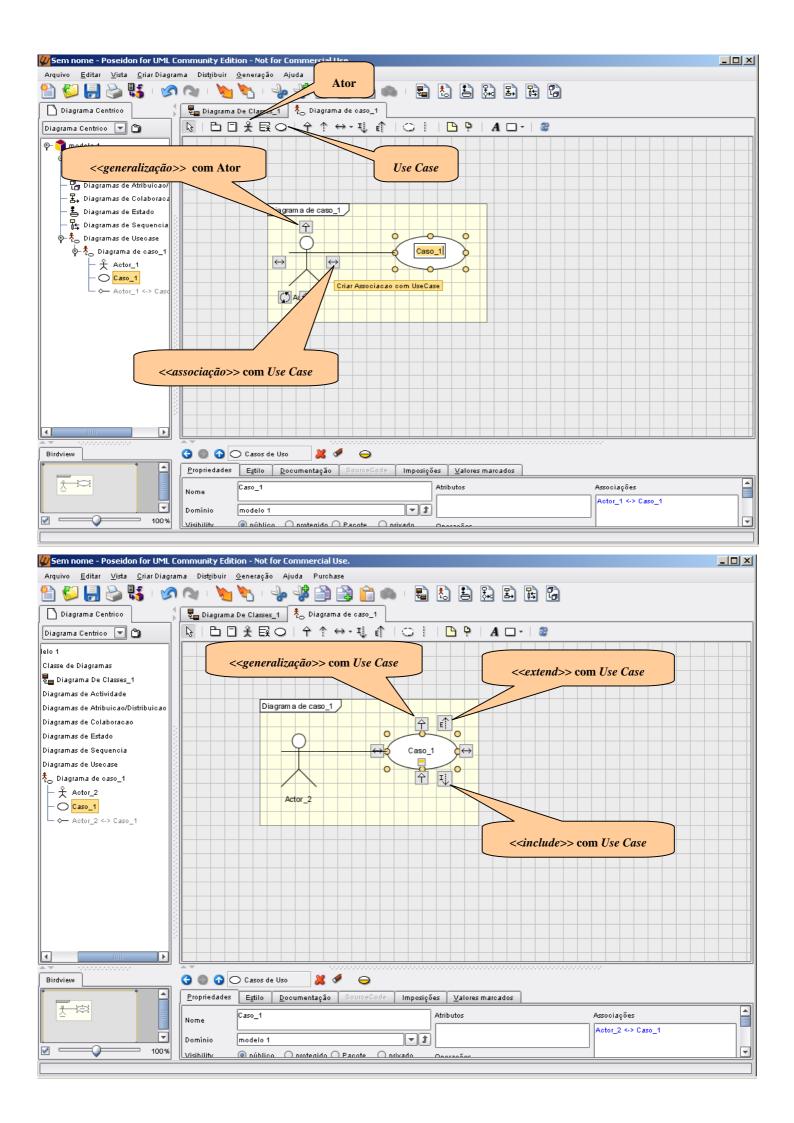
catalogação onde será analisada e definida a sua área de conhecimento. Existem várias áreas pré-definidas como, por exemplo, Sociologia, Psicologia, Informática, etc. Novas áreas de

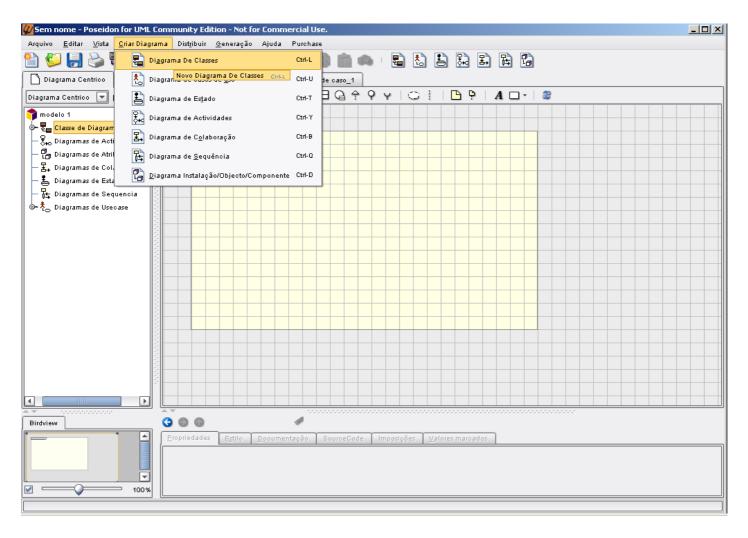
conhecimento podem ser definidas.

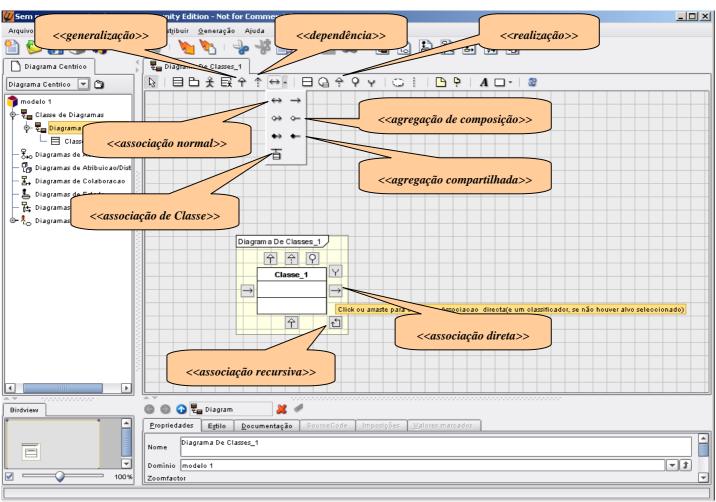
Paulo Bastos: Existe alguma informação específica sobre cada uma das publicações?


João Almeida: Para os livros temos que registrar o seu número de identificação internacional, ISBN, e para


as revistas registramos a sua periodicidade.


• Identifique classes e desenhe o respectivo diagrama.


✓ Sugestão: Primeiro identifique os vários objetos, em seguida agrupe-os em possíveis classes e por fim desenhe o diagrama.


3. Poseidon for UML Community Edition 4.1

