Lógica Difusa (Fuzzy)

Prof. Josiane M. Pinheiro Ferreira

Outubro/2007

Lógica tradicional x Lógica difusa

- Lógica tradicional (Aristóteles)
 - Uma proposição = dois estados possíveis (V ou F)
 - Pode ser insuficiente
 - Não podemos ter valores intermediários
- Lógica fuzzy
 - Dualidade coexistência de um fato e seu oposto
 - Aquele homem é alto ou baixo?
 - O sim ou não da lógica tradicional pode ser uma resposta incompleta

Histórico

- Conceito de conjunto fuzzy (1965)
 - Zadeh, Universidade da Califórnia Berkeley
 - Os recursos tecnológicos disponíveis eram incapazes de automatizar as atividades relacionadas a problemas industriais, biológicos ou químicos
- Controle de uma máquina a vapor (1974)
 - Mamdani, Queen College Londres
 - Serviu de alavanca para muitas outras aplicações

Histórico

- Controle de operação de forno de cimento (1980)
- Criação da Sociedade Internacional de Sistemas Fuzzy (1984)
- 30% dos artigos publicados até hoje são de origem japonesa

O problema da lógica clássica

- Entre a certeza de ser e a certeza de não ser existem diversos graus de ser
- Lógica fuzzy com base nos conjuntos fuzzy tem se mostrado mais adequada
- "É capaz de capturar informações vagas, em geral descritas em ling. natural e converte-las para o formato numérico, de fácil manipulação pelos computadores de hoje em dia."

Lógica fuzzy

- Método para extrair conclusões baseando-se em informações vagas, ambíguas, qualitativas, incompletas ou imprecisas
- Exemplo:

O quanto a taça está cheia ou não?

- Ela está "meio" cheia? ou
- Ela está "meio" vazia?
- Uma pessoa de 1,77m é alta ou baixa?
- A taxa de risco para aquele empreendimento é grande ou pequena?

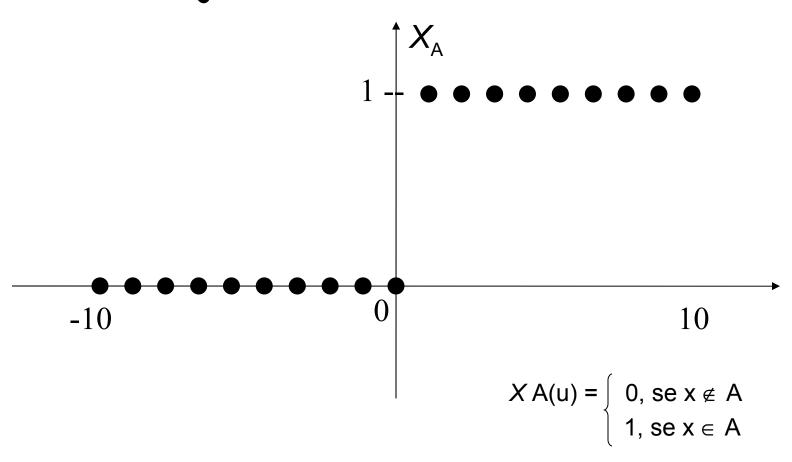
Representação da incerteza

- <u>Se</u> o tempo de um investimento é longo e o sistema financeiro tem sido não muito estável, então a taxa de risco do investimento é muito alta
- Os termos em negrito trazem informações vagas que são representadas através dos conjuntos fuzzy
- Devido a esta propriedade e a capacidade de realizar inferências, a lógica fuzzy está sendo aplicada nas mais diversas áreas

Áreas de aplicações

- Sistemas especialistas
- Raciocínio aproximado
- Controle de processos
- Linguagem natural
- Robótica
- Reconhecimento de padrões
- Processos de tomada de decisão

Teoria clássica dos conjuntos (crisp)


- Trata classes e objetos e suas relações em um universo definido
- O universo pode ser discreto ou contínuo
 - Conjunto do números inteiros de –10 a 10
 - $U: \{x \in \mathbb{Z} \mid modulo(x) \leq 10\}$
- Objetos de uma mesma classe são agrupados em conjuntos

Definição de um conjunto (crisp)

- Por enumeração
 - A = conjunto que contém os elementos positivos de U
 - A: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
- Por características semelhantes
 - A: $\{x \in U / x > 0\}$
- Pela expressão de sua função característica
 - Que associa a cada elemento do universo U um valor binário

•
$$XA(u) = \begin{cases} 0, \text{ se } x \notin A \\ 1, \text{ se } x \in A \end{cases}$$

Conjunto A no universo U

Relações de pertinência (crisp)

- Seja A: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} e B o conjunto dos elementos de *U* entre –5 e 5
- Podemos destacar algumas relações de pertinência
 - $4 \in A \text{ ou } X_A(4) = 1$
 - - 6 \notin B ou $X_{B}(-6) = 0$
 - $-6 \notin A \text{ ou } X_{\Delta}(-6) = 0$
 - $-3 \in B \text{ ou } X_{B}(-3) = 1$

Conjuntos Fuzzy

- São definidos para representarem informações vagas, imprecisas ou incertas
 - Frio, quente, vazio, cheio, alto, baixo, médio
- A teoria dos conjuntos fuzzy pode ser vista como uma extensão da teoria clássica dos conjuntos
- Mas...

Conjuntos fuzzy

- O grau de pertinência de um elemento em relação a um conjunto fuzzy é determinado por uma função característica real, que tem como valor qualquer valor no intervalo [0, 1]
- Desta forma um homem pode pertencer ao conjunto dos homens altos com um grau de pertinência 0,8. O que significa que ele não é completamente alto.

Conjuntos Fuzzy

- Desta forma um elemento pode pertencer a dois conjuntos aparentemente disjuntos
 - Conjunto dos homens altos
 - Conjuntos dos homens baixos
 - João pode pertencer ao conjunto do homens altos com um grau de pertinência 0,3
 - E a o mesmo tempo João pode pertencer ao conjunto do homens baixos com um grau de pertinência 0,8

Conjuntos Fuzzy

 Nos conjuntos fuzzy não existe uma fronteira bem definida que separe os elementos que pertençam ou não a um conjunto

Exemplos:

- Conjunto dos caracteres ASCII
- Conjunto dos homens altos
- Se temos um caracter podemos afirmar sem discussão se ele pertence ou não ao primeiro conjunto
- Mas se tivermos um homem com 1,75m. Ele está no segundo conjunto? E se ele tiver 1,76m?

Conjunto fuzzy

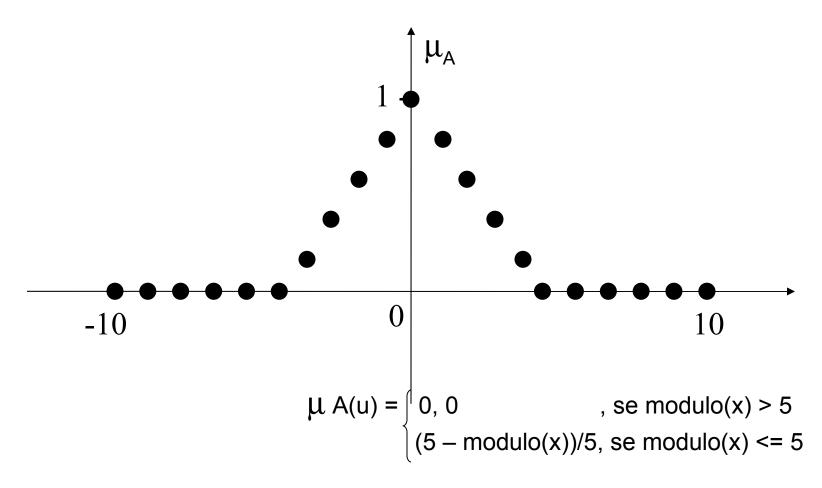
 Definição: um conjunto fuzzy A definido no universo de discurso U é caracterizado por uma função de pertinência µA, a qual mapeia os elementos de U para o intervalo [0, 1]

 $\mu A: U => [0, 1]$

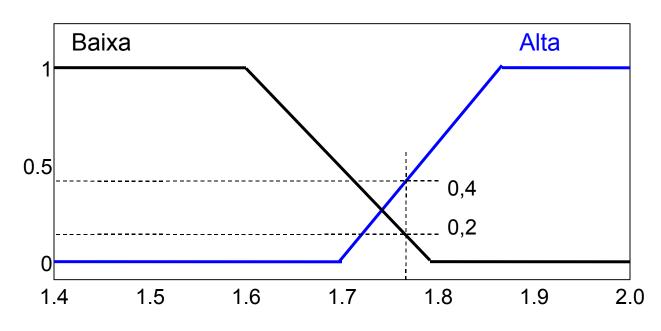
Aplicabilidade

- Possibilidade de pertinência parcial dos elementos
- Aplicabilidade muito maior do que a teoria clássica
- Existem no mundo real várias classe de objetos que não possuem um fronteira bem definida entre os elementos que pertencem e os elementos que não pertencem a ele
- Exemplo:
 - Pessoas jovens
 - Pessoas velhas
 - Carros caros

- Doenças perigosas
- Pessoas altas
- ...


Representação dos Conjuntos Fuzzy

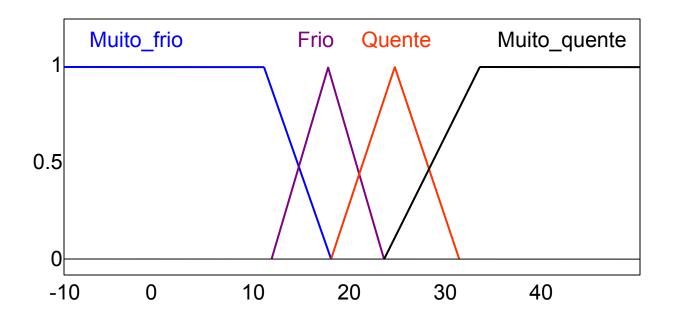
- Depende basicamente da natureza do universo de discurso
 - Universo pequeno com pequeno número de elementos
 - Representação analítica


```
-\mu p(x) = \{0,0/-10; 0,0/-9; 0,0/-8; 0,0/-7; 0,0/-6; 0,0/-5; 0,2/-4; 0,4/-3; 0,6/-2; 0,8/-1; 1,0/0; 0,8/1; 0,6/2; 0,4/3; 0,2/4; 0,0/5; 0,0/6; 0,0/7; 0,0/8; 0,0/9; 0,0/10\}
```

- Universo de discurso grande ou contínuo
 - Representação gráfica

Representação gráfica dos Conjuntos Fuzzy discretos

Representação gráfica dos Conjuntos Fuzzy contínuos



Uma pessoa de 1,77m pode se considerada tanto 20% baixa quanto 40% alta

Representação de Conhecimento Fuzzy

- Variáveis lingüísticas
 - São entidades utilizadas para representar de modo impreciso (lingüístico) um conceito ou uma variável de um dado problema
 - Admite como valores expressões lingüísticas como "frio", "muito grande", "aproximadamente alto" etc
 - Uma variável lingüística pode ser representada por vários conjuntos fuzzy existentes no universo U
 - $-\mu_A(x)$ representa o quanto o elemento x satisfaz o conceito lingüístico representado pelo conjunto fuzzy A

Representação de uma variável Temperatura

Representação da Base de Conhecimento

- Normalmente, uma BC fuzzy é representada por meio de regras de produção
- Regra de produção
 - If <antecedente> then <consequente>
- Antecedente: composto por um conjunto de condições
- Conseqüente: composto por um conjunto de ações ou diagnósticos
- Quando as condições da regra são satisfeitas (mesmo que parcialmente) dizemos que a regra é disparada o que determina o processamento do conseqüente da regra pelo sistema de inferência fuzzy

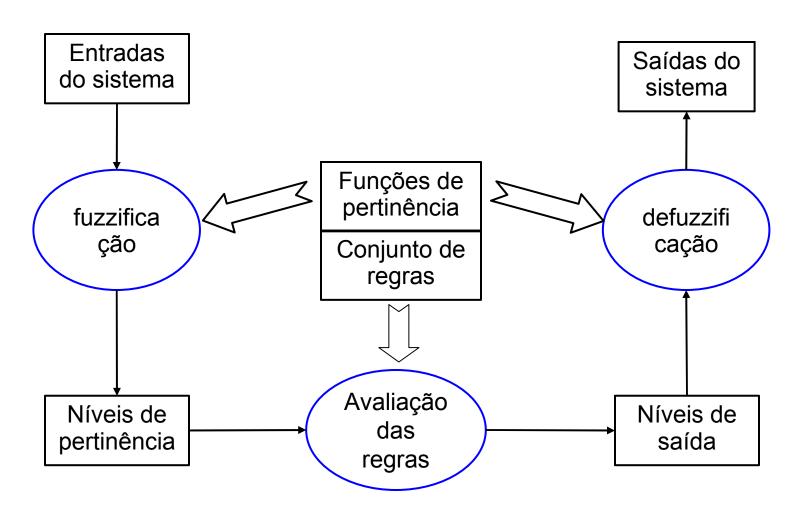
Sistemas fuzzy - Vantagens

- Requer poucas regras, valores e decisões
- Mais variáveis observáveis podem ser valoradas
- O uso de variáveis qualitativas nos deixa mais perto do pensamento humano
- Simplifica a solução do problema
- Proporciona protótipos rápidos dos sistemas

Sistemas fuzzy - fases

Estágio de entrada

 Fuzzificação: transformação das variáveis do problema em valores fuzzy (funções de pertinência)


Processamento

- Aplicação dos operadores fuzzy (no caso de antecedentes múltiplos)
- Aplicação das regras de implicação: as regras são avaliadas verificando quais são aplicáveis e
- Quão fortemente cada regra deve ser disparada dependendo de como foram ativadas cada fç de pertinência

Saída

- Combinação de todas as saídas fuzzy
- Defuzzificação: Transformação do resultado fuzzy em um resultado nítido

Sistemas fuzzy - fases

Exemplo

- Controle de velocidade de um ventilador
- A velocidade depende da temperatura

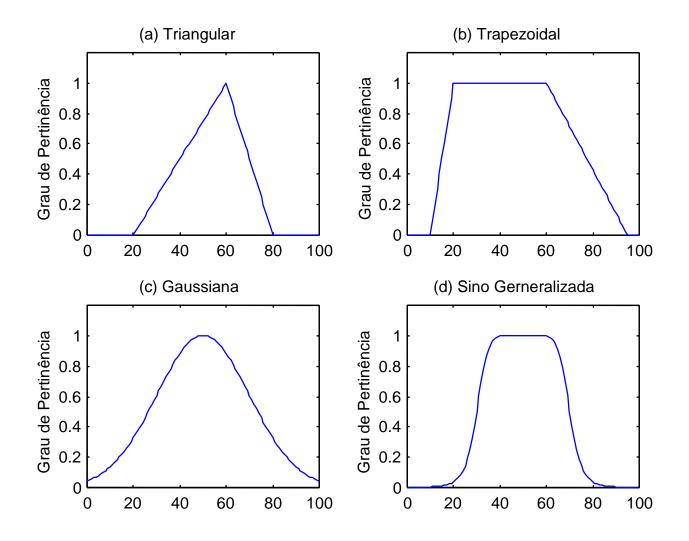
Temperatura	Velocidade	Corrente relativa do motor
Muito frio	Desligado	0
Frio	Devagar	15
Quente	Média	50
Muito quente	Rápida	100

Exemplo

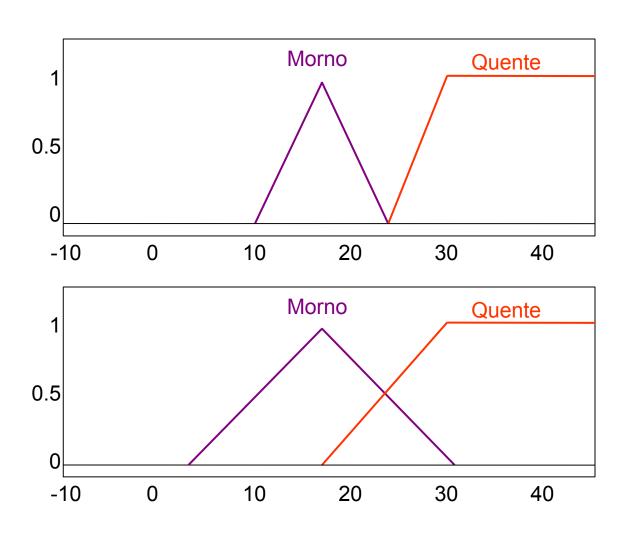
- Como a temperatura varia gradualmente do quente para o frio
- A corrente varia gradualmente do valor 50 à 15 A
- Objetivo: Monitorar a temperatura e evitar variações abruptas na temperatura
- Sistemas usando lógica fuzzy são desenvolvidos para gerar variações de saída de forma contínua e suave

Desenvolvendo o sistema fuzzy

- No momento de desenvolver um sistema baseado em lógica fuzzy, deve-se decidir:
 - Como cada variável de entrada e saída será particionada e
 - Associar uma fç de pertinência para cada partição
- No exemplo temos 4 fçs de pertinência para a entrada
 - Uma quinta (moderada) poderia ser adicionada entre frio e quente
- O número de fçs necessárias depende da exatidão desejada para o sistema
 - Quanto mais curvas, mais sensibilidade, maior complexidade

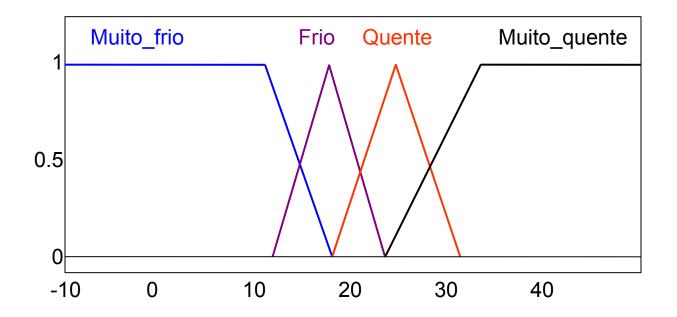

Desenvolvendo o sistema fuzzy

- Sobreposição entre as funções de pertinência
 - Caracteriza a capacidade de avaliar uma situação em sistemas baseados em lógica fuzzy
 - Distinta dos sistemas baseados em lógica pura
- A sobreposição é desejável
 - É a chave para determinar transições suaves em um sistema fuzzy
 - Permitindo múltiplas funções quase em aparente contradição

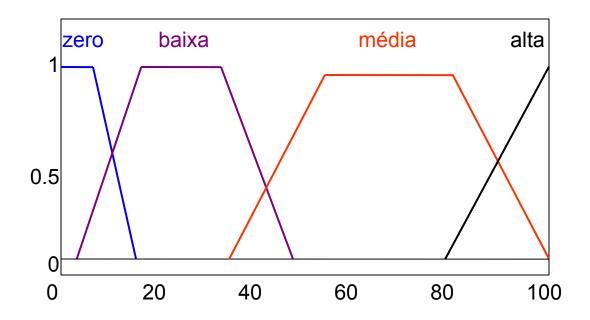

Definindo os conjuntos fuzzy

- Na fase de ajuste do sistema as funções de pertinência são continuamente ajustadas
- Os formatos mais utilizados para funções de pertinência são os trapezoidais e os triangulares
- Mas qualquer função mais adequada ao caso pode ser utilizada

Definindo os conjuntos fuzzy



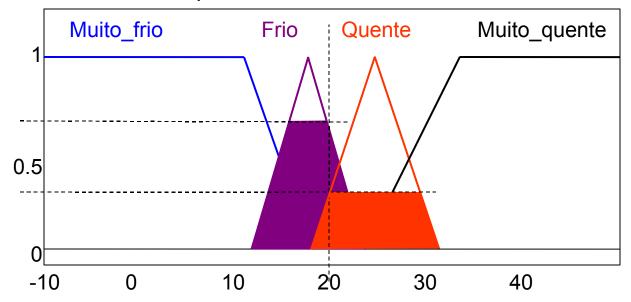
Definindo os conjuntos fuzzy


Conjuntos fuzzy correspondentes à variável Temperatura

- Funções de pertinência para a variável de entrada
- No exemplo temos apenas a variável temperatura

Conjuntos fuzzy correspondentes à variável Velocidade

- Funções de pertinência para a variável de saída
- No exemplo temos apenas a variável velocidade



Definindo as regras de produção

- If (temperatura is muito_frio) then (velocidade is zero)
- If (temperatura is frio) then (velocidade is baixa)
- If (temperatura is quente) then (velocidade is média)
- If (temperatura is muito_quente) then (velocidade is alta)
- Tanto as regras como os conjuntos fuzzy são especificados de acordo com o conhecimento de um especialista no domínio do SE

Processo de fuzzificação

- 20°C pode ser considerada "fria" ou "quente"
 - 70% fria e 30% quente

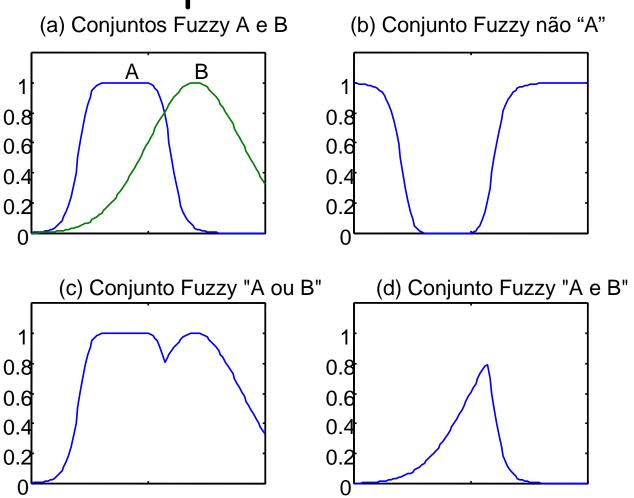
 Fuzzificação: transformar variáveis qualitativas, com base nas funções de pertinência, em alguns significado para o computador

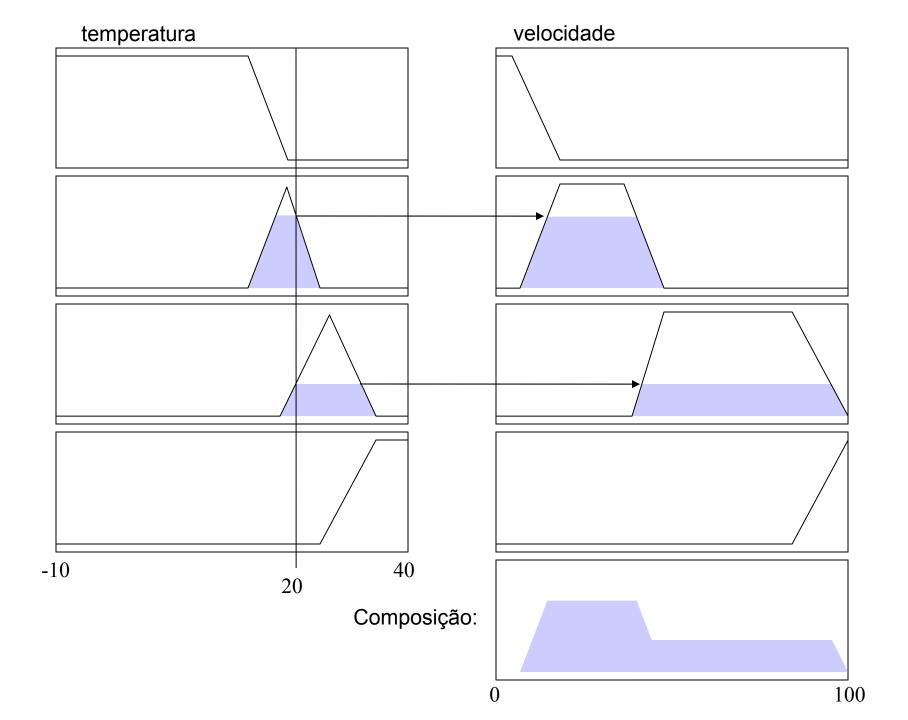
Regras ativadas

- If (temperatura is muito_frio) then (velocidade is zero)
- If (temperatura is frio) then (velocidade is baixa)
- If (temperatura is quente) then (velocidade is média)
- If (temperatura is muito_quente) then (velocidade is alta)

Avaliação das regras

- Durante a avaliação de uma regra
 - Valores são computados baseados nos níveis de ativação alcançados
 - Para cada uma das funções de pertinência
 - Para cada uma das entradas
 - Estes valores são associados às regras difusas de saída
 - Geralmente uma fç de minimização é utilizada para determinar o valor associado a cada variável de entrada quando mais de uma fc de pertinência é ativada na mesma regra


Operações sobre conjuntos fuzzy


- Complemento de um conjutno, corresponde à função fuzzy-NOT
 - $-\mu(N\tilde{A}O(A)) = 1-\mu_A(x)$
- Intersecção de dois conjuntos, corresponde a função fuzzy-AND
 - $-\mu(A \text{ AND } B) = \min(\mu_A(x), \mu_B(x))$
- União de dois conjuntos, corresponde a função fuzzy-OR
 - $-\mu(A \ OR \ B) = \max(\mu_A(x), \mu_B(x))$

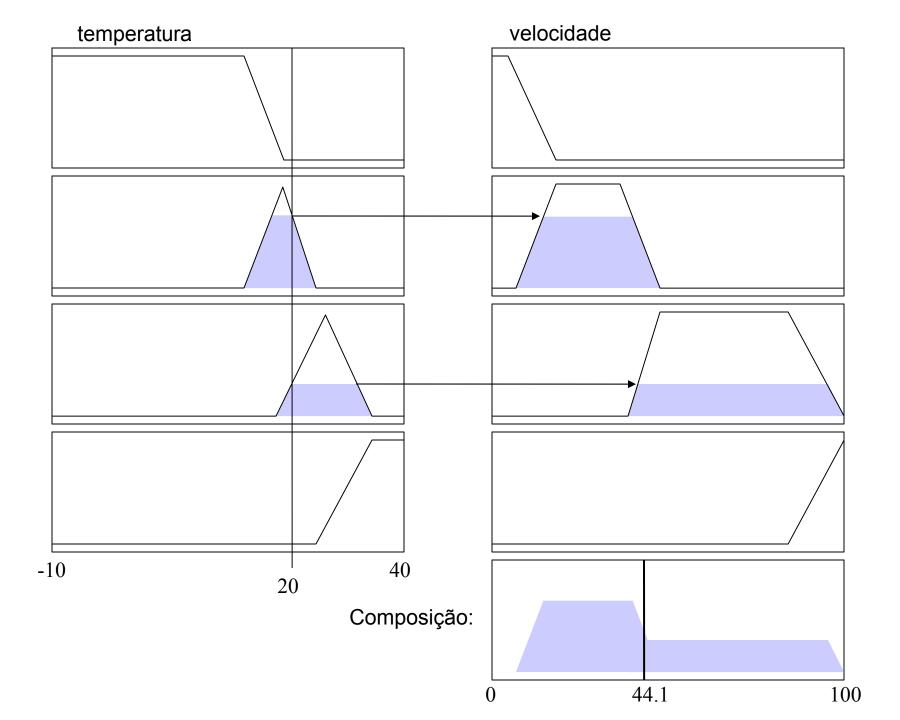
Operações sobre conjuntos fuzzy - Exemplo

- Seja a variável linguística Altura: Alice (1,65m), Bob (1,75m), Carlos(2,0m) e Denise(1,45m)
- As proposições:
 - $-A = Alice é alta, \mu(A) = 55\%$
 - B = Bob é alto, $\mu(B)=75\%$
 - C = Carlos é alto, μ (C) = 100%
 - D = Denise é alta, $\mu(D) = 0\%$
- Então, as operações Fuzzy:
 - Carlos não é alto = NÃO(C) = μ (NÃO(C))=100%- μ (C)=0%
 - Bob não é alto, NÃO(B), μ (NÃO(B))=100%- μ (B)=25%
 - Denise é alta e Alice é Alta, D e A, μ(D e A) = mínimo (μ(D), μ(A))=0%

Operações sobre conjuntos fuzzy - Exemplo Graficamente

Processo de defuzzificação

- O processo de defuzzificação da saída é necessário para:
 - Decifrar o significado de uma ação vaga como: "a velocidade deve ser baixa" e
 - Resolver conflitos entre regras que possam parecer contraditórias
- Métodos mais utilizados
 - Centróide (centro de gravidade ou massa)
 - Primeiro do máximos
 - Média dos Máximos


Métodos de Defuzzificação mais utilizados

Centróide

média dos máximos

primeiro dos máximos

O projeto de sistemas de controle

Passos:

- Especificações operacionais do sistema, entradas e saídas
- Documentação dos conjuntos fuzzy para as entradas e saídas
- Documentação do conjunto de regras
- Determinação do método de defuzzificação
- Teste para a verificação do sistema, ajustando os detalhes como requerido

Aplicações

- Hitachi (1985) controle de aceleração, frenagem, e parada para a estrada de ferro de Sendai
- Takeshi Yamakawa (1987) pêndulo invertido
- Laboratório Internacional de Engenharia Fuzzy (LIFE) (1988) cooperativa 48 companhias
- Aspiradores de pó controle de sucção
- Máquinas de lavar (Hitachi) uso otimizado de potência, água e detergente
- Câmera com autofoco (Canon)

Aplicações

- Ar condicionado industrial (Mitsubishi) reduz o consumo de potência em 24%, usa menos sensores
- Outros projetos japoneses:
 - Reconhecimento de caracteres
 - Sistemas fuzzy óticos
 - Robôs
 - Helicópteros comandados por voz
 - Sistemas de elevadores
- NASA controle fuzzy para ancorar suas naves automaticamente no espaço

Perspectivas

- Potencial manuseio de incertezas e controle de sistemas complexos
- Lógica fuzzy combinada com redes neurais artificiais
 - Capacidade de adaptação e aprendizagem
- Simbiose
 - Novas classes de sistemas e de controladores neurodifusos

Bibliografia

- Rezende, Solange Oliveira; Sistemas inteligentes. Recope-IA., p.169-201
- http://www.din.uem.br/ia/intelige/difusa/
- http://twiki.im.ufba.br/pub/MAT054/SemestreCalendaric